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ME 257 1.1
Lecture Note 1 ODUCT

These notes on Thermodynamics of Gas Flow will e concerned with a
portion of that branch of engineering study called fluid mechanics. 1In
order to become oriented with regard to the realm of fluid mechanics to
be covered herein, the different realms of fluid mechanics are listed
below:

(a) Agoystics. The fluid velocities are extremely small compared
with the velocity of sound, and the variations in pressure, temperature,
and density are also very small.

(b) Meteorology. The fluid velocities are extremely small compared
with the velocity of sound, but the variaticns in pressure, temperature,
and density are of significant magnitude.

(c) Incompressible Fluid Mechanics. The fluid velocities are small
cunpared with the velocity of sound; .the variations in temperature and

density are asmall, but the variaticn in pressure may be significant. It
may be shown that the error produced in the computation of pressure var-
iations by neglecting density changes (compressibility) is of the order

of one=fourth the square of the ratio of the stream velocity to the sound
velocity; thus, this ratio may be as great as 0.2 (corresponding to a
velocity of about 200 ft/sec for air at normal atmospheric temperature)
before the computed error in the pressure variation exceeds one per cent.
For many’ problems in the flow of gases, the refore, the flow may with little
error be treated as incompressibdble.

(d) Compressible Fluid Mechapics. The fluid velocities are apprec-
iable compared with the velocity of sound, and the variations in pressure,
tcnporntgro. and density are all of significant magnitude.

The latter realm of fluid mechanics, often called Gas Dynamics, is
the principal sudject of these notes. Further, the study herein will bde
restricted almost entirely to that of one-dimensional flow.

view ic

Since the study of fluid flow, no matter how complicated, is based
on the fundamental laws of conservation of mass, Newton's 2nd Law of
Motion, the lst Law of Thermodynamics, and the 2nd Law of Thermodynamics,
these will be our tools of analysis. It is quite proper, therefore, to
begin our study with a review and clarification of these laws as applied
to one-dimensional fluid flow problems.
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Consider in turn then the laws listed below:

Applied |System - An arbitrary Control volume - An arbitrar
to=MN collection of matter volume at a w
of fixed identity. gpace.
Law
(1) Conservation m=constant
of mass 9230
at
(2) Newton's l‘:mn:ﬂ.d.!
2nd lLaw of at
Motion
F= d(mv)
dat
(3) 1st Law of
Thermodynamics | A E=Q - W
(4) 2nd Law of du(é&)
Thermodynamics T
as=aq/T

Each of these laws:is stated in the first instance for a mass of fixed
identity and the mathematical statement of the laws as given above apply to
a mass of fixed identity or to a gypteq®. In fluid flow problems it is use-
ful~and convenient to have a mathematical statement of these laws as they
aprly to an arbitrary volume at a fixed location in space or to a gontrol
yoluyne®*®. We desire therefore, to develop such expressions and to complete
the block diagram of the fundamental laws in succeeding notes.

® BSystem is defined as an arbdbitrary collection of matter of fixed identity.

¢¢ Control volume is defined as an arbitrary volume gt a fixed location in

space.
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Lecture Note 2 CONSERVATION OF MASS '

The Law of Conservation of Mass states that mass can neither de
created nor destroyed. Thus if we consider a quantity of matter of fixed
identity and of mass m we can write for this system that the mass remains

constant or does not vary with time and

a -
at = °
Now consider using this equation to obtain an expression applicabdle
to the flow of fluid through a control volume.

In the figure herewith fluid is flowing through a duct. Mark out a
region bounded by the duct walls and sections (1) and (2) and designate
this region as the control volume. We desire to obtain an expression for
the derivative dm/dt when applied to the mass system of fluid which at time

(1) Time ta

Mass system contained within control volume

m ; .~ crmout
ln%‘ s . Fyre ;
_.=74-Tf-/ ' TTH
; j -
i F "-—A 32

77

¥y LT T rrrr——"7

-~ | &= A4 s,

(1) Time t,

Mass system not coincident with control volume
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t. is contained in the control volume. Recall that by definition
m

n -
at —im £

At-»0

where 4t =¢t, - t,
mt.:.mu system at time t.
:ntb-.: mass system at time tb

Let the mass éontained within the control volume at any instant of time bde
designated as BH. Notice that as time progresses ff identifies masses of
different identity. This (@) is not to be confused with m, my , or m,
which refer to a mass. of fixed identity.® a b

In order to evaluate the time derivative of m we notice that at time
t. m and #ff are identical so that

n = B .

On the other hand at time tb our mass system is not comrletely bounded
by» the control surface. A small portion of the system, denoted by s Bout °*
has gioved out of the control volume while a much larger portion is
still in, and occupies most of, the control volume. Also during the time
At a mass Smin » foreign to our system, has flowed into the control volume
as indicated in the figure. We note; therefore, that at time ty
our mass system consists of the mass in the control region less the
foreign mass § my, and plus the mass § m,,;- This gives

mgy, = By ~8myy + § Moyt
Using these we can write

mtb "mt.-“'m'tb ’mta + S Byt = S Bin
and
m, - @

E.:-cm
b x
o & out “ Sy

At-»o | At

*By the Law of Conservation of Mass dm_ 0 but it does not follow that
: dt

%%30. This illustrates the point that the law applies to a collection of

matter of fixed identity.



ME 257 2.3

Now Snout -/ A, 45,

since, by making At small enough, the density and cross-sectional area
throughout § m are constant and equal to the value at station (1) or
station (2). Substituting for S m and taking limits we obtain

dm - 4K
at at c.v. t 2 Ay Vo - B 4V

which states that the rate of change of our mass of fixed identity equals
the rate of change of the quantity of mass in the control volume plus the
net outflow of mass from the control voluge. Now dm/dt= O so

(%l.vf N A M= g Y, (1)

which states that accumulation of mass in c.v.=z mass inflow - mass outflow.

In case of steady flow (ﬁ s O and
c.v. ,

fl A 71’./02 A, V, (1a)

which relation $s known as the continuity equation. Thus we have develcped
a mathematical statement - eqn (1) - of mass conservation as applied to the
flow of fluid through a control volume.
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MOMENTUM EQUATION
Lecture Note 3

In the application of Newton's Second Law of Motion to fluid flow
studies it is useful to have a mathematical statement of the law which will
directly a;ply to flow through a control volume. Starting with the equation

(Force on mass ayatem)xi d (Momentum of pasy aYPtem)x

at

we will in this note develor a ®"control volume exrression of the cnd lLaw of
Moption' following a procedure completely analogous to that used 4n obtaining
the continuity equaticn or "control wvolume expression of the Law of Mass
Conservation®. In the present case it will be necessary to evaluate the time
derivative of the mamentum, M, of a system in conjuntion with flow of fluid
through a control volume.® (See footnote page 3.2)

Consider flow through the region (control volume) bounded by the duct
walls and the sections (1) and (2) shown in the figure below. In this
derivation we require that the stream projerties at (1) and (2) be uniform

. ‘across each respective section and that the velocities be in the same
direction.

—

Mass system conteained within control volume

;Mt’
1) b

Mass system not coincident with control volume
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It 4s desired to evaluate the derivative

d(momentum of mass)_ :
at

at the time t. using

d(momentip of mass). a 1im “tb- "‘.
at At—>0 4t

where M = x-momentum of mass system under consideration.

If we leot ﬁ:x-momontum of fluid contained within control volume at any
instant
then Mg = Mtb -9 S m, 4V, 5 mout

Mt.= Et.

We obtain, therefore

aM/dt =  1im (g, - V) Smpa + T Smour) - My,
4 t—>0 at

> At-:*u; {Cdtb- Mg_'_ 62 $%ut = V1 O My \
At At yj

Thus we see that the derivative depends uron two terms:

M, - M
(tb ta
At

which represents the rate of accumulation of x-momentum within the contrcl
volume and :

V28mous - vsmm)

t
which represents the net ratéof outflow of x-momentum for the control region.

\-—\f\o’

¢In the case of mass conservation we evaluated the time derivative of the mass,
m, of the system. It is interesting to note furkher that that derivative
equaled zero in accordance with the mass conservation law while the momentum
derivative equals not zero but the force on the system in accordance with the
2nd Law of Motion.



Now gm, =( PlAlvl) at

Smout = (/A7) At

dM/dt = 1lim
At=P0

(02 2v2 '101‘1" \2
74

and finally, remembering that the force on the mass equals this derivative, we

get the ®"control volume expression of the 2nd Law of Motivn "commonly called

the momentum equation.

- 2 2
(Force on mas)xg% + POAY, - ﬂlAlvl

This is an expression for the force on the mass coincident with the control
region at the instant ta' since in the limi¢ t, =t

If the flow through the control regicn is steddy then there is no
accumulation or diminution of momentum in the control wvolume and

aM .
at = ©

So the manentum equation for steady one dimensional flow becomes

V2
[Forco on Mlsls;OzAZ 2 p 14 l'

Concerning this equation of momentum Prandtl and Tiet jens® make the
remark. "The undoubted value of the theorem of momentum lies in the fact
that its application enables one to obtain results in physical problems
from just a knowledge of the boundary conditions. There is no need to be
told anything about the interior of the fluid or about the mechanism of the
motion.®” This statement applies equally well to each of the ®"control
volume equations.®

Application of Mamentum Equation

Usually the situaticn is such that one is more interested in the
force of fluid on duct between section (1) and (2) than in the force on the
mass system. To obtain the former, denoted by scriptgz. we observe that
any force acting on the mass in the control region (neglecting gravity) will
act at the control boundery and will be either a shecring force tangent
to the boundary or a rressure force acting normal to the boundary. If then
we make a traverse of the control boundary at a given instent we find the

*Prandtl-Tiet jens, Fundamentals of Hydro-and Aero-Mechanics, page 233,
McGraw-Hill, 1934.
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forces depicted in the figure herewith to be acting on the mass system
at that instant. Sumning the

*
_’/N(m}x (2)
e 7

PiA ; J PoAo
"—'A (pda)y Z. (pdaA)

1l A, &

: (Tan),
pdA control volume doundary (duct walls not shown)

x-component of these forces over the control volume (c.v.) boundary we obtain

(Force on mass); = c.z". (pdA)y 4 ‘E". (’Zé‘)x

where T: 3 shearing stress at mass system boundary. Now, exranding the two

sunmations
5;. (PdA), = duzci (pad) 4 ‘L (pda); ¢+ ‘;2 (paA)_
wvalls 1
and c.;. (Tu)x X duct (’(u)x
walls

Therefore, substitutina the expanded summations,

s
(Porce on mass) = dE; (PA) p gyt (AN + ?; (paa), * {, (paA)_

wvalls walls
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Where the first two summations represent the force of duct on fluid (= -Jx).
Using this fact then, the total (force ou zmsa)x is seen to be made up of
the following three forces

(Force on mass), -Fxt+ Pi1d) - PoA.

Thus we have found two expressions for the (force on mas)x:
(a) the expression (Force on msa)x: '&x + ;;:LA1 - p2A2

which actually represuats an identity obtained by examining the rossible forces
acting at the c¢.v. boundary and sumning these forces and

2
(b) the equation (Force on mass), 8/02A2V2 - /01A1V§

which was obtained by application of Newton's law of motion.
Combining (a) and (b) we obtain an equation for the force of fluid omn duct (F).

. 2
F x = (pyA, +/91A1V§) - (poA2 +/6212V2)
or
I =T -0

where F sp&fﬂvz and is called the impulse function. Notice that F is
a function of the stream properties and area at any given section and is
therefore a function of position along the stream.
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Lecture Note 4 LIRST LAy OF THERMODYNAMICS

The law of conservation of mass and the 2nd Law of Motion have, in the
preceeding notes, been writéen for a fixed mass system following which the
continuity and momentum equation were developed for a control volume. It is
proposed in this note to follow the same procedure, or method of attack, in
handling the lst Lav of Thermodynamics.

The first law of thermodynamics states, symbolically, for a mass if fixed

identity
Heat - Work= Eb - E.

where - l. is the change of internal energy of the mass system in state b
and state a and where heat andwork are, respectively, the amount of heat added
to and the amount of work done by the system as it changes from state a to
state b. Let us now use this statement to develop an equation applicadble to
fluid flow through a control volume.

Consider the control volume below bounded by the solid boundary walls and

sections (1) and (2). In applyimg the first law let us select as cur mass
system that matter bounded by the control volume at time t_. At time t, this

system has moved to the position shown. The change of 1nt=rm1 energy of the
system

Y
,, 1
(L Ll dd ) ps

Mass system contained within control volume

s Time tb

Mass system not coincident with control volume
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during this change of state is (following the procedure used for mass and
mamentum)

E, - E,L, = E_- E, ., AE_ _-&&5, .
tb - b t. cut in.

where the bar symbol refers, as dbefore, tc the energy of the mass in the
gontrol volume. In order to evaluate § E .and S E wo simrly multiply
the mass increments that have flowed out and into the control volume in time
& t by the internal energy per unit mass of their respective increments.

Thus /
§ Egut~ §Fin = (SBAN24)e; - (A4 V1A t)e
so we have. by substituting into equation (1)

B, - E
Heat - — t t
.Z :ork - T At = L ('/02‘2'2)‘2 - (AnV)e

and for steady flow, with w-a oAV = /AAV) and B, = B
b a

Heat-Work _ Heat-Work
vAt unit mass~ ©2 - ©)

We know by experience that the ensrgy associated with a unit of mass in the
presence of a gravitational field and motion is

osu-wg + Z g

vhere u is the internal energy of a unit mass in the absence of potential-
kinetic effects and g is the acceleration of gravity. Thus we have

722 v =
Heat-work el & 1
Heatowork & {u,+3 "Z28> - mt e e

Up to this point we have considered only the right hand -8ide of equation
(1) Let us examine next the left side and in particular the work term. As
the mass system passes from state (a) to stete (b) work is done on the svstem
boundaries (which move to the dashed positions of state b) by pressure forces.
At the same time there may be work done by the system through a shaft protrud-
ing through the control surface. Thus we may write for the work term

Work =pressure force work<4shaft work

The pressure force work at section (1) is
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(pressure x area), x (distance moved),

=-pAAa,= -p ) L (6-%: -p171_5m1
&

where v, = specific volume

Sinfe work is Aone on the system_by the pressure force at (1) a minus sign
is included above. In like manner we find the pressure force work at (2).
Whence

pressure work s pzvzs' m,= p,¥) S'ml

Since Sm-donaity x volume =/ AVAt = w/\t we may write

21‘0'820 VQ:E
wat & pyvp = PV,

Now the left hand side of equation (2) tukes the form

t- Heat-press work- t work Heat t work
vj t = vl t * v%t - (p2v2-p1v1)

This result combined with the right hand side of equation (2) gives after
transposing and using the definition of enthalpy, h su+pv,

2 2
‘1";%’("2*'!%"*’ za“) : 61‘* G-tz ‘)

where Q= heat transfer per unit mass
Ix:l shaft work per unit mass.

This equation is called the steady flow energy equation and is the
mathematical form of the lst law which applied to flow through a control volume.
It may be of interest to note at this point that two fundanmental laws are used
to obtain the steady flow energy equation - the lat Law of Thermodynamics and
Newton's 2nd Law of tion. The latter enters in the development of the
kinetic energy term V</2 which, of course, was not covered in this note.
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Lecture Note 5

COMBINATION OF THE LAWS OF THERMODYNAMICS AND OF FLUID MECHANICS
FOR INCOMFRESSIBLE FLUID FLOW

For a steady flow of a single fluid stream through a control surface
fixed in space, the first law of thermodynamics and Newton's second law of
motion yield the energy equation for steady flow:

2 2
\£ \'

(uptpvp—=— + gz;) - (w+pvitL-+ez))=Q - v, (1)
where Q denotes the heat transfer into the control volume per unit mass of
flowing fluid, W, denotes the shaft work delivered out of the control volume
per unit mass of flowing fluid, the subscript 2 refers to the stream leaving

the control surface, and the subscript 1 refers to the stream entering the
control surface. '

If the sections 1 and 2 are so close to each other that only infinitesimal
effects occur, we may write the equation in differential form: ’

du+d(pv)+d%2-+'gdz=dq - awy (2)

or, since

d(pv)= pdvt vdp (3)

equation (2) may be written
du+ pavevap+a(Ve /2t gdz=4dQ - dwx (4)

or, transposing some terms,
dux-o-vdp.{-d(vz/z)-!- gdz = A4Q - du - pdv (La)

For a pure substance we have the following relation between properties,
where s is the entropy:

Tdsa=du-<tpdv 5)
The second law of thormodynmics‘may be introduced by the relation
Qe Tas£ autpdv (6)

wvhich, when inserted into equation (5), yields
dQ - du - pavifro (7)
Cambining equations (7) and (4a), we obtain

av_& - Eap+ a(v2/2) +gi7]

or, in integral form, 2 v 2 o v 2 -'
b Umw e
) §

2
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This equation, which places a limit on the maximum shaft work which may
be delivered, is not easily evaluated in practice dbecause one seldam knows
how the density varies with pregssure. If the fluid is incampressible, however,
we obtain immediately (using/“sl/v): -

v.2 v22
Bt e )@ rEre) o

or, introducing the definition of the head, H, in length units,

d 2
= \'A
Hegtmgt? (10)
we have i (11)
le,Sg(Hl - H2)

Under eonditions of thermodynamically reversible flow, for which friction
would be excluded, only the equality sign is applicable in equation (6), and
hence equation (11) becomes

Furthermore, if the shaft work is zero between sections 1 and 2, equation .
(12) shows that for reversibvle flow the head H is constaat. This result is
essentially the statement of the Bernoulli equation, since the head H as de-
fined by equation (1¢) is identical with what is called the Bernoulli number
of the streamlins.

The form of equation (l1) suggests that we define the ®"lost head,"
Hf,o, by the expression

W
He, S3ue -vp=m -, - vy (13)

By comparison of squations (11) and (13) it is evident that I{Q must always
be a poaitive number or zero. The lost head is associated with frictional
effects, and its magnitude may usually be found only through éxperiment.

Application to Flow in Piping Systems. A piping system usually caomprises
straight lengths of pipe, elbows, reducers, and other fittings. There are
losses of head through these various canponents, and to keep the fluid fl'owing
requires the use of a pump, compressor, or fan. An important design problem
therefore, is to estimate the total 1loss in head through the piping system.

Since there is no shaft work associated with any element of a piping
system equation (13) becomes

Hl - H2= H/{lQ (lh)

For the fluid velocities commonly used in engineering practice, the lost
head in a component is approximately proportional to the velocity head,
hence we may define a

c = #L a5
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where C is a lost-head coefficient. The value of C depends to scme extant
on the velocity, density, nature and size of the fitting, and nature of
the approach flow to the fitting, but in most eases C cshanges by only small
amounts with changes in these variabdbles.

Approximate values for C for various types of fittings are listed
below:

Fitting c
l&S-deg. elbows 003-°ou
90-deg. elbows, standard radius 0.7-0.9
90-deg. elbows, medium radius 9.5=-0.8
90-deg. elbows, long sweep 0.4-0.6
90-deg. square elbows 1.0-2,0
Tee 1,0-2.0
lBO-deg. return bend 1.,0-2,0
Open gate valve 0.1-0.2
Open globe valve 6-9
Open angle valve 3-5
Sudden contraction from infinitely large pipe 0.5
Sudden expansion to infinitely large pire 1l
Straight pipe 0.01 % - o.04 §

For the straight pipe, L refers to the length of pipe and D to the diameter.

The total loesiin head for a complete piping system is the sum of the
losses for the individual components.

Application to Hydraulic Turbines The efficiency of a hydraulic turbine is
defined as the ratioc of the actual shaft work delivered to the work which
would be delivered under reversibles conditions for the same change in head:

| 4 _Jturb
?turb = ° (wt‘-‘rh)rev. (16)
From equation (12), however,
(Wturb)rev-—- g(H; - H,)
80 that
w urd
}?turb = t (17)

Q(Hl'H2)

Using equation (13), the turbine efficiency may be expressed in terms
of the losses-in the turbine, ‘

Wiurd - Yeurn 1 (18)

B

Teurd = &, - 1) Yourv +E -r"—s:/;,,;h
turd




ME 257 5.4

eH =
Fhewry _ 2 Reurn (19)
Yeurd ’ ‘7turb

Application to Pumps and Fans. For incompressidble flow, the efficiency of
a pump or fan is defined as the ratio of the reversible shaft work input

for a given increase in head to the actual shaft work input to the machine:

from which we get

i’ (wnﬂp) rev

77pump W (20)

from equation (12), however, we may write, upon noting that the thermodynamic
shaft work is the negative of the work input, that

(wpmnp) rev = 8(Hz - Hy)

80 that
7 pumr = —_— 1 (21)
{ pumr wpump

We now relate the efficiency to the losses by introducing equation
(13) in the form

Woump = - Wx 2 a(H - Hl*H!pump)

80 that we obtain

w -gH et
7pump= _ngg___!m,_ 1 - _a'!m (22)

pump pump
from which we get

gr.'ﬂ - '7punp (23)

Wpump
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Lecture Note 6 THE VELOCITY oF sounp (1)

The variation of fluid density in a compressible fluid flow field is
generally the result of pressure variation throughout the flow field. It
might be expected therefore that the rate of change of density with respect
to pressure (d./9/dp), compressibility factor, is an imjortant parameter in
compressible fluid flow studies. Such is the case and, as we shall see, this
derivative is connected closely with the propagation velocity of small
disturbances itwe&iprocal being equal, in fact, to the square of velocity
of sound (dp/d=“a“),

Let us now develop the speed of sound or the velocity of an infinitesimal
rressure wave proceeding along a pipe of uniform cross-section. This wave
might be considered to have been initiated, f or example, by a slight inward
motion of a piston at the left hand end of the pipe. The development to
follow will illustrate also the application of the ®"control volume equations®

wave front moving stationary wave front
{ at velocity a
A IR R I A A s x.} ¢ 2l
av ! Vao a - 4v a
p"‘dpa"a P. p =p+dp Ep._/a
Pt L +i0 o
Ja s I 7 777 oS {" s ” f
|
|
i
A |
® _p¥dp l
ojpp _ g P
P i i
iy T
° : o i
18 | B

R o e ﬁ

A o .

g ' E encl S mt a

g —av rd i

! 0 ")

> 2 v 1
Variation of pressure and Variation of pressure and
velocity of fluild at a given velocity of fluid at any
instant of time. (Observe at instant (Observer at rest
rest with respect to duct) with respect to wave front)

(1) This note reproduced from mimeograph notes by A. H. Shapiro, M. I. T.
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In the figure on the Jeft above the wave front is assumed to propagate
to the right with a velocity a. The fluid through which the wave front has
passed is at a pressure (p + 4r), has a density (“244/”), and moves to the
right with a velocity 4V The fluid into which the wave is propagating has
a pressure p, a density f. and is motionless. This frame of reference is
one of "unsteady motion® since as time progresses the stream properties at
a given dust section vary with time.

To simplify the analysis let us assume the point of view of one traveling
with the wave. To this observer the wave appears at rest and the process
appears steady as shown on the right in the figure above., Fluid flows steadily
from right to left approaching the wave front at a velocity a and leaving with
a velocity (a - dV) while the fluid pressure and density changes from p and
L top ¢+ dp and. d_/a. respectively, across the- wave.

For purposes of analysis consider the infinitesimal wave front many
times enlarged and draw a control surface about the wave fr-nt region to
get control volume shown in the figure below.

(2) (1)

wave front

L. L z Z =~ | -

= - -~ " == ="

| |
(ﬁ ’) f | I system :
i with :
' | :p'Jo (p #dp)a > | forces i (3‘
| | acting |
: i | thereon |
= = s o o e J

control surface

Let us apply the momentum: and continuity equation to the steady flow through
this control volume. We have by the momentum equation (taking direction of
fluid velocity to left es positive and denoting the inlet section as 1 with
outlet indicated by subuscript 2)

(Force on msa)xzfiAlvl (72 - 71) 1)

While the continuity equation states

LMV = LA, (2,
For the case under consideration .

Li=P Loz pa af

Vlzn V2an-dv
Als A2’A

(Force on maa)x:-. rA - (p *dp)a
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Substituting these into equation (1) and (2) gives

pA-(p-}-dp)LtAa(a-dv-a) (1la)
Pra=(Aa) A(a-av) (2a)

Simplifyi
priiyine ap = e av (1b)
. H.0.7T.
o= - /adv 4+a d/o- (a2 (av) (2v)

onev. o]

The ratio $ is written as a partial derivative at constant entropy because
the variat in pressure and temperature are very small and, consequently,
the process is nearly reversible. Moreover, the rapidity of the process,
together with the amellness of the temperature variations, makes the process
nearly adiabatic. In the limit the process may be considered both reversible
and adiabatic, and therefore, isentropic.

or, finally,

For a perfect gas we have the isentropic relation
=B, = constant.
(P)Hk

Putting this into logarithmic form, differentiating, and noting that p=_RRT,
we obtain

ln p - k lnf= constant

petf @)= ipem

Thus we get for the velocity of sound in a perfect gas

.:\j(;é; = V.

In the cass of air with k=1, R=1715 f£t2 \
h m this becames

a®y9.1 T (T in °R)

where units to be associated with 49.1 are ft
sec



ME 257 6.4

Fressuro Propagation from a Point Disturbance

The physical significance of the sound velocity may be illustrated by
considering the uniform line:r motion of a point source of disturbance through
a compressible mediun. At each instant of time the roint source may be imagined
to emit an infinitesimal pressure wave which spreads spherically with the
speed of sound from the point of emission. The (ressure pattern which existe
at any instant is then found by superposition of all the pressure pulses which
were previously emitted.

The accaompanying figure shows several patterns as seen by an observer
moving with the point disturbances. In each pattern the point O represents
the present location of the point disturbance, the point -1 represents the
location one unit of time previocusly and so on. For each of these previous
locations there is drawn a concentric circle showing the extents to which
the corresponding wave has spread. For example, to find the present location
of the wave which was emitted at time -3 a circle is drawn with -3 as a
center and with a radius 3at, where t is the unit of time. The distance
between point -3 and point @ is then given by 3 Vt, where V is the velocity
of the point disturbance with respect to the medium.

For a stationary source, shown in Figure (a), the pressure change
spreads uniformly in all directions. When the source moves at subsonic
speeds, Figure (b), the pressure disturbance is felt in all directions
and at all points in space (neglecting dissipaticn due to viscosity) but
the pressure pattern i1 . no longer symmetrical.

For supersonic speeds Figure (d) indicates that the phenomena are
entirely different from those at subsonic spreeds. All the pressure distur-
bances are included in a cone which has the point source as its apex, and
the effect of the disturbance is not felt upstream of the source of disturbance.
The cone within which the disturbances are confined is called the Mach cone.
Pigure (¢) shows the pressure pattern at the boundary between subsonic and
supersonic flow, that is, for the case where the stream velocity is identical
with the sound velocity.

Pigure (d) ifllustrates the three rules of supersonic flow proposed
by vonKarman®. These rules apply only for amall disturbances, but are
usually qualitatively applicadble for large disturbdbances.

®*Supersonic Aerod&namic.--Principlo- and Aprlication®, by Th. ¥onKarman,
Journal Aero. Sco., Yol. 14, mo. 7 (1947) pg. 373
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a. The Rule of Forbidden Signals. The effect of pressurs chinges
produced by a body moving at a speed faster than sound cannot reach points

ahead of the bdogy.

b. e _Zone Actio a t Zone of ence. A stationary roint
source in a supersonic stream produces effects only on points that lie on
or inside the Mach cone extending downstream from the point source. Converse-
ly, the pressure and velocity at an arbitrary point of the stream can be
influenced only by disturbances acting at roints thet lie on or inside a
cone of the same vertex angle extending upstream from the point considered.

c. The Rule of Concentrated Action. The proximity of the circles
representing the different rressure impulses in the figure is a measure of
the intensity of the pressure disturbance at each point in the field of flow.
Thus, for the staticnary source, the intensity of the disturbance is syumet-
rical. In the case of the supersonic source, we have the rule of conc:ntrated
action: the pressure disturbance is largely concentrated in the neighborhood
of the Mach cone that forms the outer limit of the zone of action.

The configurations shown may easily be observed in the form of gravity
waves on a free water surface when a sharr-pointed object is drawn through
the water at varying speeds.

The Mach Number

In the preceding section it was shown that the nature of the flow
pattern depends on the relation between the stream velocity and the sound
velocity. The ratio of these two velocities is called the Mach Number. Thus,

M=V/a

The speed of sound in this equation is to be taken at the local temperature
and pressure of the stream, and, of course, varies fram point to point in
the flow field.

The semi-angle of the Mach cone (figure d) is related to the Mach
Number as follows:

sin 1
&‘M
Note that the Mach angle is imaginary for subsonic flow.

From the preceding section we see that the Mach Number is a criterion of
the type of flow pattexrn. Later it will be shown that it is a convenient
parameter that will appear in our working equations.
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Lecture Note 7
TOTAL PRESSURE AND TOTAL TEMFERATURE®

The purpose of this note is to introduce the concept of total t emperature,
To' and total pressure, p,, and to show that the ratios of static to total
temperature (T/T,) and static to total pressure (p/py) are each funetions of
Mach Number.

Total Temrerature
Consider the steady flar energy equation

V2 'v2
mr ] r o s [nr]en

The kinetic energy terms may be combined with enthalpy to form a new term,
total enthalpy, ho. Thus
2
n,= h4¥_.
° 2

If the flow under consideration is that of a perfect gas, then
d h= cpdT

2
v
and d hogcpd'r*.d?

2
— v
_cpd (T'hé_cp)
or d h°= cpd'ro

Where 'r°=-. T+ = and is defined as the total ®smperature.
' P

The physical significance of total temperature may be illustrated
by the use of the following figure. If in the figure an observer should
travel with the slug of gas shown at the same velocity as the gas he would
be ccgnizant only of the random motion of the molecules. Hence, since the
static temperature and pressure result from the random motioh of the gas
molecules, the observer would sense static values of temperature and
pressure. In a flowing gas the molecules have superimposed on their random
motion the directed motion of the flow. The kinetic energy of the directed
motion is the cause of the difference between the static and total temperature,

T - T_—_'——
© 2¢p

¢ Reference: pp. 20-21, AAF TR 5514
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Lecture Note 8
NOZ .LE DESIGN

By sim;le area flow we mean the one dimensional flow of a perfect gas
in the absence of friction or heating effects. This type of flow satisfies the
following conditions:

l. frictionless
2. adiabatic
3. one dimensional

A simple area type of flow may be used to accelerate the stream flow or to
decelerate the flow velocity. The flow passages producing these effects are
called nozzles (accelerate flow) and diffusers (decelerate flow) respectively.

Consider a simple area flow. The equations satisfied by this flow are

2 o) =§1:T2 (state)
1 2 _ -
'1‘1-4-2—‘=p = '1‘2 + Tc; = To = constant (energy)
W= f AV (continuity)
X
p (X ) k-1
P Ty (2nd Law)

where subscript (1) designates conditions at the inlet to the flow being
considered and no subscript denotes any station downstream from the inlet.
Since thereare five variables in the above fow equations (p, 9 , T, V, and A)
we may select one as an independent variable and find each of the remaining
fowxr in terms of this one. Practical problems generally fall into either 'one
of two classes.

(a) It is desired to pass a given mass rate of flow with minimum losses
tetween two regions of different pressures with some assumed variation
of pressure, say line:r, between the two regions.

(b) Given a nozzle, what mass rate of flow and pressure distributions
will exist through this passage of variable area for various pressure
ratios applied across the unit?



In case (a) our independent or known variable is pressure, p. In case (b)

our quantity of known variation is area, A. We shall consider each case in
turn.

As an illustration of case (a) consider the following example.

Example (g_} It is desired to expand 0.62 slugs of air per sec. reversibly

and adiabatically between a reservoir and exhaust region with following
conditions.

pl-‘- 300 psia Passage length =5"
D= 560° R Exhaust region pressure = 40 psia
Vl =100 ft/sec. Linear variation of pressure

from reservoir to discharge region

w=0.62 slugs/sec
Design a nozzle to meet above requirements.

Solutions: Of the five variables in the four applicable equations one,
the pressure, is known throughout the flow. Hence we have
four equations in four unknowns. To determine the area at any
particular station we proceed as follows:

Combine continuity and state equations and evaluate Po and To then

U=%! (1) (state and continuity)
To =T+ g (2) (energy)

g k-1
T = To(p/p,) k (3) (2nd Law)

With p known, use (3) to find T at any given station. Then equation (2) gives
V at this station. For these values of T and V along with the known values af

w and R equation (1) gives the requisite area of the nozzle at the selected
station. And so forth for any station.

The results of the example may be summarized in the form of a plot p/po
w/A, A+ V and Mach number, M, versus nozzle station along with a t-s diagram
of the expansion process.
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M=l

P/Po=
0.528

p - e e e e cwl e e e

Station
P
T J##f’fﬂﬂf* o
P
To i i i ...--""'#F 1
T =il e
Tth i "
‘ Pexit
e =

These graphs illustrate

a)

b)

c)

e)

To decrease pressure, sections of decreazing area are required until
a pressure of p = 0,528 Po is reached. For reduction of the stream

pressure below this value a passage of diverging area is required.

For p/po>0.528 we have M&1 and for p/p< 0.528 we have M D1
which indicates that in subsonic flow the pressure decreases with
decreasing area and vice versa for supersonic flow.

The stream velocity increases continuously through the nozzle. Thus
we may say that in subsonic flow a converging area accelerates the
flow and that a diverging area accelerates the flow in supersonic flow.

The area decreases to a minimum (throat) and then increases.

At the throat of the nozzle M=], P/po—0-528. and, obviou.ly.
w/A 18 a maximum,
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The expansicn process through the nozzle is shown as a solid vertical
line on the T-s diagram from the pressure py to the exit pressure. The value
of the stream pressure and temperature at the throat of the nozzle are indi-
sated on the diagram by pi) and Ty

Having designed a nozzle to meet certain operating conditions, it is now
of practical and academic interest to investigate the characteristics of the
nozzle when operating at other than designed conditions, for example

w #£ 0.62 slugs/sec., p; # 300 psia, and/or Poxtiatat rogion#“o psia.

This problem comes under case (b) noted above and will be considered next.
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Lecture Note 9
NOZZLE O: ERATING CHARACTERISTICS

As an illustration of the tyre of problem coming under class (b) as
listed in the preceding lecture note consider home problem 9.1 which deals
with the following. Given a nozzle with known inlet total pressure and
total temperature at what mass rates of flow and for what corresponding
exhaust region pressures will it operate reversibly and adiabatically?

Probadbly the simplest way to investigate this question is to deal
with a single equation which in itself contains the restrictions placed
on the flow by continuity, 1lst Law, equation of state and 2nd Law. The
four applicable equations may be cambined into a single equation as
follows. We have

vzﬂﬁ% (1) (cont. and state)
To-.-,'r+5f- (2) (energy)
°p
p \JK/k=1 (3) (208 Law)
>, ) ) (2ot tax

Equation (1) may be written

w _pv
A~ RT
wherein
) e
k-1/k
v=\I’2cp (To -T) 2¢p To [ - ‘p%
o\pr
o

Substituting these expressicns for p, V, and T we obtain after simplifying

W Po _‘2_ k i Lkﬂ.l
tal (BB -3
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If then this equation is satisfied at every section of the flow, it
follows that the conditions imjosed upon the flow by the 1lst Law, 2nd Law,
continuity equation, and state equation are satisfied. With p, and T,
known in any given flow we may effect a graphical solution of the above
equaticn by plotting (w/A) versus (p/p.) waere the latter may in the physical
problem vary from O to 1. A graph of fhe relation w/A = £(p/p,) is given
below for, of course, some assumed value of p, and To.

For constant values of
P, & Tb

d — — ——Ara'
| R

> 1€
R
|

§

/’ M>1- | “m<1 \
A T SN = SO L . e
n'lS‘ p;pa 1 -0

With the above plot values of w/A and p/p_ satisfying the equation
w/A=t(p/p,) may be easily found. The ratioc of w/A may be determined at
any station of a given nozzle with w known. Entering the graph with this
predetermined value of w/A we find the value of (p/p_) that must exist at
the nozzle station selected. The ratio of p/p, along with T, and p, fix the
state of the fluid at this section.

It 18 to be noticed on the plot that, for a given value of (w/A), (p/po)
is not uniquely determined. In any particular problem we can however by
examining the physical aspects of the flow, determine which value of (p/py)
is apprlicable.

As an illustration assume a nozzle is discharging air from a large
reservoir isentropicelly with maximum mass rate of flow existing through
nozzle. Flot the pressure distributicn through this nozzle.

With the reservoir pressure and temperature known a plot of w/A versus
p/p_ may be made., Thon with mass rate of flow through nozzle known we can
for®nozzle sections b, ¢, d, o, and f measure area and determine (w/A).
With this value of w/A corresponding values of p/p, eare read from w/A - p/po
plot above.



ME 257 9.3

Beginning at the reservoir p/p.= 1, then as v/A increases p/p. decreases
from a to b to ¢ at throat as {ndicated on w/A - p/p, plot. Leter readhing
the nozzle throat the ratio w/A decreases again and now there may physically
exist either value of the (p/po) corresponding to a given w/A with a contin-
uous variation of pressure through the nozzle being mainteined. Thus at
section 4 the pressure may be that corresponding to 4 or 4'. The final
pressure distributions that may exist for reversidble and maximum mess rate of
flow are shown in the sketch below as solid lines.

4

1. 0
(3]
P/Pg 'g
i
(-]
3
0,528 —41.0
o
o =
. g
<8
-}
(-]
ol S -

Nozzle station

Suppose now the nozzle to be operating with w less than maximum.
Proceeding in the manner described above the pressure distribution indicated
by the dashed line on the sketch is obtained. Since

M= f(-n-
Po

a Mach number scale may be placed along the vertical ordinate of the
graph. This scale indicated in what Mach number range the nozzle is
operating.
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Nozzle Flow With Shoeck in rf r

The above example illustrates that for an exhaust region rressure
between p,,and py there is no solution of the relation (w/A)= £(p/p,) hence
it is impossible to have reversidble flow through the nozzle in this range
of exhaust region pressures. Fhysically it is possible to have a discharge
region pressure in this range. What happens vhen such an exit region pressure
does exist? To answer this question let us discuss the operating charac-
teristics of a nozzle used as a high speed wind tunnel.

The figure below shows a wind tunnel which operates intermittently by
means of an evacuated reservoir. The atmosphere acts as the supply region
from which air &s drawn through the convergent section, test section, and
diffuses into the evacuated reservoir, Below the skestch of the tunnel there

is indicated the pressure distributions through the tunnel for seven different
exhaust regiom pressures.

- 7 .
(\ normal shoe S - - yaeuum
.;Z><f reservoir
\‘\‘*"""--—-.-h___________ —I/”,—"—;- ) .
atmosphere flow . ! i
G wl 5 el
T g test \zé/
section ; ko
J [~
1.0 i"*:g::_‘ i A g d Eéi":‘-;" f1ow
B S e —(7)
p/p.| N e T _——(6)
Po S (5)
0.528 | - T~ =)
{ \\
\\\ = (3)
g TT(2)
i - (1)
(o) i S L L s AL S———
During the operation of the tunnel seven distinct conditions present
themselves.®

sPararhrase of pp. 3=5, Part I, High Speed Aerodynamic Lecture Series by
Dr. B. H. Goethert,
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l. PFor conditiocn one, wherein the pressure in the reservoir is less
than the pressure in the end of the diffuser, the tunnel is operating at
maximun rate of flow with subsonic, sonic, and supersonic flow in the con-
vergent, straight, and divergent sections of the nozzle respectively. The
transition of the diffuser pressure to the lower reservoir pressure is achieved
through a system of expansion waves,

2. For condition two, wheréin the pressure in the reservoir has dbeen
increased to the diffuser outlet rressure by the inflowing air, no pressur

digturbance occurs at the diffuser end,

3. Foar conditiocn three, wherein the pressure in the reservoir has be-
come greater than the diffuser outlet rressure, the transiticn to the greater
reservoir pressure is produced by an oblique shock wave with flow upstream
of nozzle exit unaffected.

4. ¥Yor condition four the pressure in the reservoir has increased to
a value which produces a normal shock wave at the nozzle exit.

5. For condition five the reservoir pressure has attained a value whigh
produces a normal shock in the diffuser. Flow preceding the shock is un-
affected. Downstream of the shock subsonic flow exists.

6. Por condition six the reservoir pressure has reached a value which
produces reversible flow throughout the tunnel with sonic flow in the throat
and subsonit. flow -elsewhere.

7. FYor conditicn seven the reservoir pressure has reached a value
producing subsonic flow throughout with a reduced mass rate of flow.

Notice that the flow conditions in the test section remain constant
as long as the reservoir pressure is not greater than that corresponding
to conditicn six.

The analysis of nozzle flow that we have attempted so far has been
confined to reversibdble flow considerations only. The flow through a
discontinuity such as & shock wave is irreversible and hence we can not
predict the nozzle pressure distribution such as that corresponding to
condition 5 by the analysis we have made so far. In order to complete our
study of the operating characteristics of a nozzle we will need to consider
plane shock waves. This gwaits our further attention.
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Lecture Note 10
SIMFLE AREA FLOW

Consider a gas to be flowing steadily through a duct which satisfies
the conditions

(a) Constant area,
(b) frictionless, and
(c) adiabatic.

The stream properties of such a flow would in gemneral be constant through-
out. If, however, any one of the conditions listed was removed the stream
properties would then change with the effect (variable area, fricticn or
heating) present. In the work to follow we will study how the stream
properties (p, p,, T, To. V., M, F) depend upon each of these effects individ-
ually and then collectively. The individual ceses to be analyzed are shown
in the figure below. Each of the flows indicated in the figure is of
practical importance, for example, in the study of flow through a ram-jet

engine. The simrle area type of flow applies to the inlet diffuser and
exhaust

Simple area Simple Friction Simple Heating
Flow . Flow Flow
T v . v, N I
AR 2] - L . %,
// i

(1) (2) (1) (2) (1) (2)

frictionless adilabatic, constant frictionless constant

adiadbatic duct area duct area duct

nozzle, the simple heating flow to the combustion chamber and the sirple
frictional flow to flow between diffuser and flame holders of such an engine.

The purpose of this note is to make a study of the simple area type of
flow. Our immediate objective will be to determine how the stream properties

(pPe Por Te Tose V. M, F) of the flow depend upon the independent varjable area,
A¢ A physicael interpretation of the problem at hand is, for example, the
following. Assume we have a frictionless, adiabatic flow of a perfect gas

in a constant area duct., The stream properties of this flow are invariant
throughout.
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Frictionless, adiabatic Frictionless, Adiabatic
+- -
Stream properties constant Stream properties may vary

with area

Suppose now that we vary at will the area of the duct, that is, the duct
area becomes the independent variable of the flow. We want to investigate
how the stream properties of the flow change with, or depend upon, the duct
area. We may note immediately that the stream properties p_. and T do not
vary with area in the simple area type of flow since it is an 1sen%ropic
flow. The simple area flow may be used to accelerate a flowing gas in

which case the duct used is called a nozzle or conditions may be such that
the flow is being decelerated in which instant the duct is called a diffuser.

The following expressions relating the stream properties of the flow
under study may be writtem

p =ﬁu~ (State)
w = /AV  constant (Continuity)
2

G A (Mach No.)

KRT
F e pA(l 4 WM°) (Impulse Punction)

K
k-1

Po = P(1 + %l M2) " & constant (2nd Law)

To_: Tf-g;- Q;T(l+53'l M2) = constant (1st Law)

The variables in this group of six equations ere (since M always appears as
a squared quantity, use as a variable)

P, O, T, A, V, M, F.

Selecting one (area) of these seven variables as independent we may
determine each of the remaining six derendent variables (p. 2, T, Vv, M2. r)
in terms of the independent quantity, A. Thus by assuming A to be known
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we have 8ix equations in six unknownss To solve the equations as they stand
would be difficult if not impossible. It will be found convenient therefore,
to first reduce the equations to a set of linear differential equations with
variables in logarithmic differential form.
The equation of state becomes
lnp = lnp.o-ln Te¢ ln R

differentiating

wasfrg

For total rroessure we may write

lnp = 1o p+ K 1n (1‘*%-1- n2)

differentiating
" k-lcam) ]
P 1{a+ k—;l-,'uz

Reducing similarly each of the six equaticne to a ditferential form and
assembling the results there is obtained

dp _ 4/ 4T
P O + (State)
a4/, dA L dv ,
S+ oty =o0 {Continuity)
- o av dT
55_ 2 v " 1 (Mach No.)
aF _ d "Vl aM° _ dA
T —pp- + T+ B2 VAN (Impulse Function)
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Q’?+ _wuf/e %:o (2nd Law)

1+ k=) M2
2
ksl 2
2
aT 2 -
iz + T % 0 (1st Law)

To investigate the variation of the dependent vzriables with area we
must find expressions relating

e A AR g, A .
M2 A P A
2
and interpret the results. PFirst obtain M in terms of A | This may be
done as follows: M2 A

By Mach equation get

(% F)

using continuity for 8V in above find

v

using equaticn of state get
, 4T
T

af _ ., (en .
)
and With lst and 2nd Law results obtain

;.
S ()

q's
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or ‘l— 7
2(1+ k=1 M3)

am _ "é'l M '

M : 1 - M !

[Py -t

The results of similar aimultaneoui solutions of the applicable equations
are summarized below

dA
A

-8

ﬂ dA/A
2(1 + k-1 M)
e - =
1 - M
av
= - )
1 - M2
dp KMS
P 1 -M
a° M
L 1 -M
aT (k=1) M2
| 1 -M
ar . S
F 1 + k@

Table is8 read as follows
[\

dA
€L ete.
v 1-M2> A
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General conclusions can be made relative to the variation of the stream
properties of the flow with the independent variable area by these relations.
For example

av _ 1 a4

v 1 -M A

indicates that in a subsonic flow (m&1) a convergentpassage (dA< 0) will
accelerate the flow (dV >0). Conversely in a supersonic flow a diverging
passage is required to accelerate the flow. Similar reasoning may be
applied to determine the manner in which the remaining stream properties
vary with the duct area in a subsgnic or supersonic flow.

Stream properties as functions of Mach Number

For the isentroric flow under consideration analytical relations may be
found between each variable of the flow and the flow Mach Number by re-
arrangement and integration of the tabulated results above. As an example
let us integrate the equation relating Mach Number to area between the int
in the flow where M°=1 and A s “)M‘]. and any general point where M2—= M<,
Denoting (A)M_ by A® we have

A Mo
/ 4 _ f L - M e
A - 20+ kL) )

A®

Letting K2== x and kT""’-=b and multiplying through by -2, there follows

41‘—: ;-x g_£
1l+bx x

x
= = / —dx f - ax
_ 1+ bx 4 (l+bx)x
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wvhieh expands, by partial sums, inte

% x
2 1n A - _ - S + ax ; ax
e 1+ bx x =D 1+bx

1 1
b
= «(b +1) dax + ax
l +bx x
i 1

Whence _’ krl

2
= | EA
or, finally 2(1 + k=) M° | k-1
A__-1 2
A* M kHl

vhich gives the ratio of the local flow area to flow area for M =1 as a
funotion of the local Mach Number for an isentropic flow.
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This relation is given below as a curve of A/A® versus M for a given
value of k. The curve may be intsrpreted for an assumed A® as the flow
area required

o e o et s e Tl A m s e =) e e —— > oD

for a given Mach Number. It serves to illustrate further the area variation
required to inerease the Mach Number of a flow from sud to supersonic values.
This curve or the tabulated values of A/A® vs. M (Tables 30 through 35 Keemsmm
and Kaye) may be used to find the area change required for any reversible
Mach Number change. For example to diffuse air from Hl = 0.8 to M2= 0.25
would require a diffuser with an area ratio of

A, _ (A/A%), 540

i, T A%, T T.o - A
Or to expand from M1= 0.25 to H2= 2.4 with an inlet area of A, = 3 1n2.

would require a thrcoat area of 1

1.25 132.

Atht A®

=(A/A‘)1 4 2.40 0=
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and an exit area of

(A/A®); 2,40 1 _ 2
LTAEH M T 200 g

To continue finding the stream properties as functions of the flow
Mach Number consider obtaining the relationship between V/V® and M. By
previous results ‘

and using
g T = -’@ ;‘_ﬁ
A 20+ k1) w2
we get \ 4
A 2(1 + =1 ) M2
Ve 2 | 2

which becomes

.=t -
Me Te M 2(1*3-;—1 2)

Proceeding along the same lines the following relation is obtained for
isentropic flow with variable area

L =
¥e M 2(ktl) (1% X5 )

Similerly p/p®*. T/Te,6 © /% mey bte found ip terms of Mach Number.
However, these ratios 4o not prove as usefultin applications as the
ratios p/pg. T/To. <2/ which have been given as functions of Mach

Number in lecture note 2

T They are not therefore derived here nor tabula‘ed in the gas tables.
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As an example of the use of Tadble 30 of Gas Tables by Keenan and
Kaye suppose an intermitteat supersonic wind tunnel exhausting to
vacuum reservoir is to be designed for a Mach No. of 2 in a 1.2 £t
test section., If the tunnel receives atmospheric air at p = 14.7 psia
and T = 70°l. what are the required tuynnel throat area and the test
section stream properties? Assume isentropic flow with k= 1l.4.

P = 14.7 psia ’ ! EVACUATED
"o 700’ RESERVOIR
14 Section
P .1 ?.""
T, = 530 Mp .
£ —00
— J ()
- " 9’1 5
“:ﬂ
Te — W?a:—,?t-
T ] throat )n
s
| (-
T) = 294°R _ N
SR test section
] PO ——
s

A schematic diagram of the tunnel and the flow process on a T-s graph are
given in the figures above, With M= 2 in the test section find

(Me) = (L) = 1.633 where subseript 1 stands for test section
1 Ve 1

(i&;l; 1.6875;(3—0)1: 0.555

(;; )ls 0.23 ;(;5)1;' 0.1278



ME 257

Therefore

A, = A°® - 2 __ — 2
th = zaﬁ;}l— ‘1 = —1%257—5 0.712 £¢

N :(-'L) T, = 0.555(530) = 294°R(-166°F)
'1‘0 1

Py = \ )xp = 0.1278(14.7) = 1.875 psia
Po

- 4,7 x 144 _— slugs
Pt (i-zp 7023 17]5 530 sk rtd

M. BRT. = 2 Va.4(1715) (294)=2 x 840 =1680 F4/med.

Y= M 1

w=@QAV; = (0.000535) (1.2) (1680) = 1.08 SUER

10.11
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Lecture Note 11 COMPRESSIBILITY FHENOMENA

The shock waves occurring in a nozzle as discussed previocusly are related
to the flow discontinuities existing about bodies in supersonic flow fields.
In order to establish relationships for the shock phenomena occurring in a
supersonic nozzle and also to analyze in general the discontinuities occurr-
ing in supersonic flow we take up next the study of wave propagation and
compressibility phenomena in a compressible fluid.

Consider an infinitely small point source of disturbance which may
produce periodic disturbances that propagate with the speed of sound through
the surrounding medium. Let this point source exist in a stationary fluid
field under the following conditions

(a) point source stationary
(b) point source moving at subsonic velocity
(¢) point source moving at supersonic velocity

X

<l»
"
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The waves emanating periodically fraom the source will proragate srher-
ically outward forming :“he wave patterns indicated in the sketches herewith
after any given time incerval. When the fluid and point source are at rest
concentric circles are formed by the wave pattern. #hen the source moves at
@ velocity less than the wave proragation velocity, the wav:s form circles
about their point of origin and consequently are no longer concentric since
the source emanates each wave from a different positicn in the fluid. 1In
case (¢) the spherical wave fronts are formed in such a manner that all wave
front circles are tangent to a line making an angle/ﬁ? with the direction of
the source velocity such that

sin,@: -:Z .

The tangent line is called a Mach line (each point on the Mach line is
traveling normal to the line at the velocity of sound - hence Mach line is
@& sound wave and not to be confused with a shock wave which has proragation
velocity greater than s;eed of sound).

In case (b) it is observed that in the absence of fluid viscosity
effects the disturbance waves will not die out and will influence the fluiad
field at an infinite distance about the scurce as time progresses. In case
(¢c) however it should be understood that the fluid field is completely
undisturbed forward of the Mach cone and only within the cone are disturd-
ances experienced by the fluid.

Subsonic Motion of a Wing

The above considerations can be arplied to the steady motion of a
rigid body of finite size through & fluid by imagining the steady staete motion
of the object to be acquired through a series of small separate impulses. Each
impulse giving rise to an increase in velccity (an acceleration) and causing
a pressure disturbance to emanate from the body. Each of these disturbances
spread out from the object with the speed of sound and in subsonic motion
would produce a flow rattern extending, ideally, an infinite distance from
the body. Actually, of course, the disturbance fields about the object
would die cut at some distance fror the object due tc fluid viscosity effects.

Let us arply these ideas to the subsonic motion of an airfoil in a fluid
at rest (the atmosphere). With the wing moving at a steady subsonic velccity,
there exists about it a region of disturbance which is characterized by values
of pressure, density, and velocity different from the free stream values of
these rroperties. This disturbance field may be imagined to have been pro-
duced by emenation of waves from the airfoil during its acceleration up to
the final steady state velocity. After the disturbance field (stream condi-
tions about this airfoil) has teen established in this manner it will persist
until the wing is again accelerated and new waves sent out. As long as the
stream velocity relative to the wing is everywhere subsonic, these waves will
radiate in all directiocns. Thus the pressure and velocity distributions
about a wing in steady subsonic motion are continuous, i. e., no sudden changes
in pressure or velccity exist as through a discontinuity such as a shock wave.
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Supersonic Motion of an Airfoil

Suppose now an airfoil to be asccelerated to a low supersonic velocity
by a seri=s of serarate impulses, When the wing attains _a supersonic velocity
the disturbance field about it cannot extend to great distances since the
wing tends to overtake the disturbances it propzgates. However, immnediately
in front of the wing there must be some disturhance characterized by the
stream lines spreading out so as to enclose the body. Thus we are led to
conclude that a disturbance due to the wing extends some finite distance ahe=sd
of it. Since this distance is finite there must be a sudden change in stream
properties at the boundary between this disturbance field and the free stream
fluid. These circumstances give rise, therefore, to a discontinuity and the
existence of a discontinuous presssure and velocity distribution about the wing.
This discontin:ity is known as a shock wave and through the shock wave there
are sudden changes in the stream properties. In steady supersonic motion of a
wing this discontinuity remains at a fixed distance from the wing and propagates,
therefore, into the free stream fluid at the speed of the wing.

Some insight into the origin and nature of the wave discontinuity present
in the supersonic motion of objects can be obtained by considering the
following facts which will not be validated here.

(a) The velocity of wave proragation in a fluid is a function of the
pressure rise across the wave and is given by

. = \| K P2 k-1
Vpropae. \\j AT E_kl (p1> T 21:.I

where subscripts 1 and 2 refer to conditions upstream and downstream
of the wave respectively. (For p2/p1:4 1 observe that V = kKT and
hence the rressure incrememt across a sound wave must be infinites-
im1)o

(b) A pressure pulse moves at sonic speed with respect to the fluiad
immediately in front of it.

(c¢) The fluid in the wave of a rositive pressure pulse is left with a
disturbance velocity in the same direction as the pulse movement.

As a consequence of these facts it follows that in a series of positive
pressure pulses each pulse overtakes ones in front resulting in a coalesence
of the waves into a strong wave with a finite pressure rise. The resultant
strong wave propagates at a supersonic velocity. Now as a wing is accelerated
to a surersonic velocity the pulses sent cut by the wing during its acceleration
coalesence to form a strong wave in front of the wing. During the formation of
this wave its velocity increases until finally its propagation velocity becomes
equal to the wing velocity after which time it remains at a fixed and finite
distance in front of the wing.
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In the figure there is indicated the form of such a wave that would accompany
a wedge at a loy supersonic velocity. On the wedge axis the wave is normal to
> :

~

i~ ;55 i
Ea S 2w = S
\ v, Vo

% 6""""' T +"" e T

N
\

(a)

the relative velocity of the stream. As we go outward from the axis the wave
becomes weaker, these portions of the wave being further from the source dis-
turbance. In accordance with (a) above these parts of the wave propagate at
a lower velocity. Consequently as we go away from the axis the wave bends
backward approaching asymptotically in a straight line making the Mach angie
s With the axis. At higher Mach numbers the wave is closer to the wedge as

indicated in the sketch where My>M;.

consider the transition of conditions about the wedge from the steady

state condition (a) to the steady state condition (b) figure above. The wedge
may te imagined to be accelerated from to M2 by a series of impulses. AsS a
result of any given impulse the velocity of the wedge is increased and a pulse
is sent out. During the time interval required for the pulse to travel from
the wedge to the wave the velocity of the wedge is greater than that of the
wave and the wedge moves closer to the wave, After the pulse reaches the wave
it causes an increase in the pressure rise across the wave and in the wave
velocity. Near the axis of the wedge the wave travels with the new velocity
of the wedge and away from the axis it gradually weakens ard curves backward
making the Mach angle 3 o> with the axis. Notice that s < 1 im accordance

with sin /9 = SlZ

If the Mach number of the wedge is sufficiently great and the half wedge
angle less than 45° the wave will attach itself to the wedge as shown below.
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’_‘\.‘L + ?E.I

The relative velocities of the stream through the wave at various roints on the
wave are shown in the figure. Close in to the wedge where the wave is strongest
the stream velocity is deflected an angle (V. At points farther from the wedge
the velocity is affected less and less as the wave becomes weaker and weaker.

Shock waves not normal to the free stream velocity and through which the
stream velocity is deflected are called oblique shock waves. The Mach number of
the stream entering an oblique wave is supersonic while the leaving stream Mach
number may be supersonic or subsonic depending upon the angle () and the inlet
Mach Number. Normal shock waves are normal to the free stream and leaving
stream velocities. The Mach number of the fluid passing through a normal shock
always changes from supersonic to subsonic.

A description of the flow field adbout objects in subsanic and surersonic
flight and the manner in which this field is built up has been attempted in this
note. Two general features in particular that have been discussed and that
should be emphasized are restated here.

(a) The pressure and velocity distributions about a body in subsonie
moticn are continuous and extend to great distances from the dody.

(b) The flow field adbout an object in supersonic motion extends to finite
distences in some directions - the boundary of the field in these
directions being marked by a discontinuity (a shock wave) in the

field stream properties.

Finally, it is pointed out again that as a shock wave becomes weaker it becomes
in the limit a sound wave,
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Lecture Note 12
NORMAL SHCCK WAVE

Imagine a fluid to be flowing through an ediabatic, frictionless, constant
area duct as shown below. In this steady flow field consider the region
bounded by the dashed line. We refer to this regicn as the control volume and
its boundary as the control surface. Subscripts 1 and 2 designate flow con-
ditions at the control volume inlet_and exit respectively. Let us investigate

vy v
Py | ' ng
) NN T2 2.
pol ; ”p°2
al ! '.2
M, | JMQ

this problem: For given inlet conditions to the control volume what are the
possidble exit conditions? One obviocus and yet not trivial situation is that
in which the inlet and exit conditicns are identical. There is possible, however,
a not 80 obvious situaticn in which the exit conditions may differ from those
at the inlet if the inlet flow is supersonic. When this situation exists and
the control region's thickness is very small (of order 10-8 inches for air)
the region represents what is called a normal shock wave. To determine, for
given inlet conditions to the shock, the seven variables listed in the figure
at the exit of the control volume requires the simultaneous soluticn of seven
equations. The equations are obtained from application of the following
definitions and physical laws.

Conservation of Mass (continuity equation)
Newton's 2nd Law of Motion (momentum equation)
lst Law of Thermo (energy equntion)
Equationof state

2nd lLaw of Thermodynamics

Velocity of sound

Mach Number definition

Py ey o la o e
~olbhesw e
N’ N N N N NP

The equations to be solved are

1) Py, =P (aa = 0)

(2) p, #A¥ % b, + P2 (aa=F = arF = 0)
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, W ¥

(3) e Tyt 5= =cpT> +5- (4T, = 0)
P] - Po

(4) AT - (p =P RT)

A i S

(5) Poy 6}3-% 5., G,%;T)k'l (as - 82

a 2 l22
_ 22 2_

(6) -,rll- = T (a2 - kRT)
M%7 MET, 42

(7) ;lg-}': v 2 (Mz‘:- A
1% 1 KRT

Equations (1) through (4) represent L equations in 4 unknowns and were first
solved for the non-obyious condition of /‘i ff 2 etc. by Rankine and Hugoniot
to obtain what are now called the Rankine-Hugoniot relations? They will not
be derived here, however. With the following goals in mind it is necessary to-
effect a solution of equations (1) through (7). Our goals are the following
relations®*

.p_2:f M ’02 —

—= 1(My) pl-_fz(m)
T, Poo

= =ra(M,) — =1 (M)
7“5 Poy 4t
2

My £ (M) p%i = £4(My).

Equation (2) divided by (1) and rearranged gives

P2 _ P

=¥, -V
P, PNy T

s¢ Tabulated in "Gas Tables" Tables L4B-52
* See rp. 38-39, Liepmann and Puckett, Aerodynamics of Compressible Fluid,
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2
Using (6) in the form MRT = k 2-za® we substitute !k— for ﬁ

and get i
2 2
a a .
—sz - -%]-, = k(V; - V2). (1)

Equations (3) and (6) along with the definiticn of starred quantities give
the following relation :

2 2
2 L—_ .2
k1 T2 e 2(x-1)
.23 % Ekfl)l‘z - (k-l)V2] . (11)
Substituting in (1) fhe value of 122 and alz as found from (ii) we get

L Em)a“‘ = (m)vgﬂ 1 [:(H-l)-.‘z . (x-x)v;ﬂ
‘ v T v — = kW - V).

or

2 1
this simplifies to
(V3 = Vo) _
% (kﬂ.)l‘z TV & %l (V1 = V2)
1'2
whence o2
ViVo=a (114)

Pressure ratio across a normal shock
Using (1) equation 2 can be written

P2= P +/°171(71 - 72)
or

2. £ ve.v "
pl-l',' pl (1 12)



ME 257 \ 12.4
From (111), (i1), and (7)
' V.V, = %= .2 'S Mz,__a___
Wa2=8"=98 My - (iv)

N

If this relation along with f%l = 5

is used in the pressure ratio relation

i

there results

3 = 1+-k(u12 -kl 2 -;;‘31-)

or P _ 2k 2 k-1 _
at s & oc
From equation (1) 2
e
Using equation (iv) for vlvz we have
2 - M
P k1, 2, 2
& Mt ka

or

=!‘2(H1}

E'I Py p2 f2(M1 = f3041)
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Wwhich, after a few trys, becomes

12.5

2k u.2
r (Bm

1) (1+ k=l M12)

Ty

2(k 1) M2

tal pressure ratio across & normal shoe¢

We have

ds _ar _k=1dp _ Mo _ k2
°p T k p To k

wWhence, across a normal shock wave with dT. = 0,

9P _ap . _k_

Po

a .
P k=1 T

d el
Olo'd

This may be written in terms of p and/"by replacing %% with

which follows from the equation of state.

dpo k dlo
P, k-1 r=a

Integrating from 1 to 2 we have

or

Thus

-1_4dp

k-1 p °

ln(Pa ) k-l
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P
for e
Po,
1/%
this relation gives [—':f .(:—i)

showing that decrease of p is measure of degree of irreversibility associated
with the shoek or is a meaSure of the departure of the process through the shock
from a reversidble adiadatic process. The total pressure relation, after using

(P P
<pf>=f2(u1) and p—lz =1£(M),

takes the form

. =
P ; k=1
—=£ = :lHk
p =1 4 2 2 2 _ k-
ol _(ﬁ (kfl) "1 ) T(T'f Ml %-}
ktl » 2 ;Ll 3
or - -
2:2 ;jL—Ml g!;.M12 - k=] =¢ (Mi)
Po, |1+ 'Lz.l M, 2 k1 k1l 4
In the derivation of
P2 _
g =£,(M)

we could have, by interchanging indices, obtained

p
o = £ 00).

P
% = W

My=£5(M)

Thus with the relation

we may determine
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this reduses to the form

;. mirir
M, = %ki g :fs(“l)

g tot t

If a pitot tube is placed in a supersonic flow it will produce a detached
shock wave and will measure she total pressure behind a normal shock. This
value of total pressure along with tHe statié pressure in the supersonic flow

ovid e
pr L /

/ detached shock

h | 2 (F_
/\
\

sufficient data to determine the Mach Number of the supersonic flow. The
pressure rise, as the flow is brought to rest, is divided into two parts, one
p2/p due to the shock and the other p /p2 due to isentropic compression be-
tween the sh~ck wave and the pitot tube“head. We may write

stagnation point (p°2)

- .
Pop _Poy.Pop _ [ . k- k-1
P1L P1 Poy (1 - ":3 « 1,(M)

or D —_ —_ o
o2 _ 2 kel 2k pn2 _ked] I-B _
. 'E’E‘ My |Fr§ . % = feM)

This equation which relates the observed total pressure and the free
stream static pressure is known as Rayleigh's pitot equation.

‘e

b ¥4
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TO ACCOMPANY NOTE 12, NORMAL SHOCK WAVE

NORMAL SHOCK FUNCTIONS FOR AIR

(DATA FROM KEENAN & KAYE °*GAS TABLES,® TABLE 48)

12.8

72l 6.000

S

S 8, =R 1‘%'{

O,

L
P
z_.=f.: b (AT = (i),

B

T 1 S S R | ﬂ.m
! T_ ] _-ﬂ
3 4 5 é 7

UPSTREAM MACH NO., M_
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Lecture Note 13
OBLIQUE SHOCK WAVE

Experiments show that when a wedge shaped object is placed in a surersonic
flow there may result a plane shock wave emanating from the nose of the body or
there may arise a detached shock wave which is curved and rasses in front of the
object. It is found that the flow Mach Number and the wedge angle w together
determine which of these two types of shocks will occur. Consider the analysis

detached shock

of obligque shock waves with the following purposes in mind:

(1) To determine the exit conditions from an attached oblique shock wave
given the inlet conditions and either W or the wave angle et .

(2) To determime the limitations on M and &/ for an attached shock to
ocour.

(3) To show that the normal shock wave is a special case of the oblique
shock with o< = 90° and &) = 0°.



ME 257 13.2

In the figure below a flow is deflected through an angle {Jas it passes
through a shoeck wave which makes an angle oCwith the upstrsam flow velocity.

N = Vel. component normal to wave front
L = Vel. component parallel to wave front

/) alss

4 - - _B.j

/_ v — Tf’ #?

/

R
i
g \

o

/ 7777

T
4 \ 7
! ,(rrr!

The control volume indicated by the dashed lines is selected such that its
upper and lower sides are coincident with the flow streamlines and its ends
are parallel to the shock front. For convenience assume the areas through
which the fluid enters and leaves to be unity. The physical laws and def-
initions listed below will be applied to the flow through the control volume.

(1) Conservation of mass

(2) Momentum normal to shock
(3) Momentum parallel to shock
(4) EBnergy equation

(5) Equation of State

(6) Geometry of Figure

(7) 2nd Law of Thermo

(8) Velocity of sound

(9) Mach Number

The equations which follow from applications of these nine conditions are

AN = P, (1)
plf 101N12= p2’f‘ p2N22 (2)
NiZ ¢ Ly° No2 4 L2

cpTl + — :cpT2+ > (4)
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71’;'1'1 5 le‘z G)

tan (X -o)) = "52 (6)
A >
Pl \ kel _ P2 k=l
(B = = A B ) i
2 2
0 . 2
T, 2 (8)
lil\l_'r; sinok= MQ“I‘E sin(eX -¢)) 53
N N
1 2

The first six equations are sufficient to determine all static conditions across
the shock wave for given inlet conditions and (J or o&, It will, however, ‘be
convenient and useful to solve the complete set of equations simul taneously to
obtain tie following relations®

P2 _ T2

Ff' = £,(M;, sincX) T = 304, sin =3

,02 Po

—==z=r_( sinok) 2 < in o<

0, fat"h o, £,(M, sinoX)
2 0l w? ain?

M2 8102 -WJ) = £5(M, &nX) tan(eK-c)) = el tieg) M1 SR <
M]_a sinot cos K

where the functions fl' f2. etce. are identical with those of note 12.

Solution of the equations proceeds as follows:
Combining (1) and (3) we have

A¥, -L)=0

so Ll-..-. 1.2.—_ L

¢ Some of which are tabulated in "Gas Tables® Tables 55 tiuough 57.
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and hence (4) becomes
N2 N2
o T, + S = T, + 5.
Combining (1) with (2) we get

Py - Pa=AN (N - Ny)

AR " P T )

which, by substituting ‘k—z for % from (8), takes the form

a1l 2
-il‘{- - -‘-S-;:k(NQ - Np ). (1)

Equations (4) and (8) along with the definition of starred quantities give

a2 Me 12 o ok
x-1 > 2(k-1)
. o= (11)
or 2= 1 [k 1)a2 = (k-1) (N°+ L E’

Substituting in (1) the values of 12 and 112 found from (11) we £ind, finally,

NN, = a®? - 12 (F‘i') (141)

Notice that for the normal shock L= O, N=V and (iii1) reduces to
'1'2 = .‘20
EPraasure ratioc asross an obliocue shock
Follewing a procedure analogous to that for the normal shock we get

P2
;1- = £,(M) sinX).
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In like manner we find

IR

T
Ei--: fB(Ml sinoK)

P°2
—= =2 ( sinoX)
Poy  Th M

M22 ain2(9'~ =) = f5(M1 sinh ),

ession relati e

If all the shock inlet conditions and ©X are given the first four
relations above are sufficient to obtain p./o, t, and p at the shock exit.
The last relation, however, will not give M, unless, in 8ddition to M; and X,

() 18 known., Our npext ster is to determine 4/as a function My and X
By equation we have

NiN.
tan( 4))— o _LZ

using (iii) and expressing velocity components in terms of the resultant
velocities we get

or by equation (ii)

tan(X -)) = ﬂ. a1 kﬂ 1

or, dividing numerator and denocminator by alz. we obtain

2, k=l
—_— = a:l.n
tan(A —()) = KT k#l M

N12 sin X cos V)
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This expression relates Mk
on and @ for a plane s

a supersonic flow. It is convenient to present this equation graphically by
plottingX versus (Jfor values of M, as shown below.

| B
s S
_h\_\r\\ _,__:
- "T,*\R1w;?
- + i _]'.-'
# - T /' :i-
P S
v 52 |
L A
Pl
1 {
20 = P e H
- | i
g IS R | 4 i
0 !

o 10 20 30 40 50
deflection angle, &)

Observe from the grarh that there exists three possible situations for a
given wedge angle4y . They are

(a) Two values of A for given M}. Por example 4/ = 20°, M= 4.0 give
A=3or A= 84°. Either value of A may occur derending upoil the boundary
conditions of the flow. Usually the wave with the larger shock angle occurs.

However, with the proper ad justment of the downstream pressure sthe wave with
the lower shock angle may be produced.*

(b) One value of A for a given M. For example #/= 23° M=2.0,
d - 6_500

(c) No value of X for a given

. Por example %4/ = 20°, M; =1.5.
When this condition exists there occ

8 in the flow a detached shock wave.

* See ppe. 54-55, Ferri, Elements of Aerodynamics of Supersonic Flows,
MacMillian, 1G49.

.6‘. and &Jand by it we may determine the limitations
ock to occur when a wedge shaped object is placed in

-4
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In this snalysis there has been developed a series of equations with
which it is possidble to find the oblique shock exit conditions given the inlet
conditions andX or & , It may be seen that each of the equations in this
series reduces to its normal shock counterpart as cA—> 90° and & =) 0°,
Lastly with the expression relating K ,¢)J, and M, , which is graphed on page
6, we can determine the 1limiting values of M and &Jfor an attached shock to

occur when a wedge is placed in a surersonic flow. These are the aims we set
ocut to fulfill.
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Lecture Note 14
SIMFLE FRICTIONAL FLOW - I

The flow to be considered in this anote and the next is that of
a perfect gas through an adiabatic constant area duct with friction.
The purpcses of these notes are to determine the locus of the fluid states
corresponding to such a flow on the T-s diagram, to discuss the charac-

teristics of this simple frictional flow, and to establish certain expressions

that relate the stream properties of the flow to the flow Mach number.

Fanno Ligg

Consider a perfect gas to be flowing in a frictionless, adiabatic
constant area duct. Throughout this flow the stream properties would
be invariant. Suppose now there to be joined to this duct at section (1)
an adiabatic constant area duct with friction as indicated in the figure.
Downstream of (1) the stream properties

—_—
No change in Stream properties
stream properties¢+—) change due to friction

(1)

will vary due to the presence of friction. A relation between the stream
properties at section (1) and the pressure and temperature at any down-
stream station in the flow may be obtained by writing the energy and
continuity equation for the flow. Thus

2
v v
CPTI"’-%:cpT"’T
w=E_ av,
RT

Replacing V in the energy equation by ¥ R’_:I‘_ as obtained from the continuity
equation, we get A

e 2
T, + ‘E't; .-_-r+élc.p(.:.3 (B =, (1)

For given inlet conditioms (therefore given To andlf )

this equation represents a relation in terms of temperature and pressure
that must be satisfied at any given point in the flow. By assuming
values of T to exist at successive downstream jpoints in the flow it is
possible with this relation to determine the corresponding p at this
point thus fixing the state of the fluid (p3, T1. To) at sdlected points



Te

ME 257 14.2.

in the flow. Further, by arbitrarily assuming a value of entrory, s,, at
the inlet to the flow the entropy at downstream points in the flow m%y be
determined by

s
S:ASJSI + 81 )

- T b
8 =|{¢c_ ln 32—« K 1ln + 8, - (i)
Lp Tl pL 1

The Second Law through equation (ii) further restricts the values of T

and p that may exist downstream of the inlet by the fact that the fluid

must proceed through velues of T and r corresponding to states of increasing
entropy since the flow process is an irreversible adiabstic process.

As an illustration consider a perfect gas to be flowing from a large
reservoir through a convergent nozzle thence through a simyle frictional
duct. with known inlet conditions at section (1) (figure below) we may,
by assuming values of T to exist downstreem as a result of the frictional
effects in the flow, determine with equations (i) and (ii) the locus of
states the fluid nay attain in the flow. This locus plotted on a T-s
diagram is called a Fanno Line and ajppears as indicated on the accompanying
T-s plot.

Subsonic flow through simple

frictional duct.
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Beginning at state (p , T ) on the T-s diagram we £ind the flow to
proceed isentropically to °(p : T.) thence along the Fanno Line through
states of increasing entropy and incroaatng Mach number tending toward a
Mach number of 1. FPor the flow to proceed beyond M = 1 would require a
decrease of entropy in violation of the Second Law. Thus we find in an
initially subsonic simple fricticnal flow that the Mach number increases
toward a limiting value of one. Similarly, in an initially supersonioc
simple frictional flow (figure below) the Mach number follows along the
lower bdbranch of a Fanno Line through states of higher entropy and lower
Mach numbers toward a limiting Mach numdber of one. It is impossible,
therefore, for a flow to proceed along a Fanno Line or through a simple

frictional duct dontinuously from subsonic to supersonic or from surersonic
to sudbsonic conditions.

Supersonic EiéJ“fhrough
simple frictiocnal duct.

##f,ﬂfsg; anno Line

_.c:-";_:"ﬁl

For given inlet conditions to a simple frictional duct, there exista a
Fanno Line representing the possible states that the flow may proceed through
in the duct. wWhether a portion or all of these possidble states are attained
by the fluid as it flows through the duct depends upon the amount of frictional
duct length and the pressures imposed upon the boundaries (inlet and exit)
of the flow system. Let us examine the effects of frictional duct length
and "boundary pressures® upon a given system. Surpose, for example, that
we have a convergent nozzle - simple frictional duct unit and consider ih
turn the effects of

(a) frictional duct length
(b) reservoir pressure

on the flow through the unit.
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Effect of Frictional Duct Lepgth in Subsonic Flow.

To examine (a) we will assume constant reservoir and exhaust region
pressures and let the duct length vary. As a starting point let the unit
be such that at its exit M = 1 and the exhaust region pressure is just
attained.

il Po . .
II\\H <® ° .
\ 3 o Wy (3 (1) (2
\ Wy

pﬂ
w W
[¢") }(3)

A Panno lines for flows with same
/ To but different mass flow rates,

oy

o _ wa> v3>\')l>w .

For this case (figure above) the flow through the unit from (po. T ) follows
isentropically down to the inlet of the simple frictional duct thegco along
a Fanno Line corresponding to w, to M = 1 at duct exit sectiah (1). If now
the duct length is increased to (2), everything else remaining the same, we
find the flow process to follow along @ Fanno Line corresponding to a lower
mass rate of flow Woe Throughout this latter flow M<1l, If the duct length
is increased further beyond (2) the mass flow in the unit continues to de-
crease and in the limit w tends to zero as the duct length tends to infinity.
Now, on the other hand, if the duct length is decreased to (3). we find the
flow process to proceed isentrcrically down to the duct inlet and thence
along a Fanno Line of mass rate of flcw w_>w.. As the éduct length goes to
zero, the Mach number of the nozzle throa? inéreases to a Mach number of one
corresponding to a maximum mass rate of flow w, through the nozzle (as the
duct length goes to zero the unit becomes a signple convergent nozzle).

Effect of Heservoir Iressure in Subsonic Flow.

Consider next (b) that is the effect of reservoir pressure on a given
unit., First let the reservoir pressure, Po. s and exhaust region pressure
be the same, 1
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For this case there is no flow. If now the reservoir pressure is increased®
to a value p slightly above the exhaust region pressure flow will start

with a low maSs rate Yo through the unit N <1 everywhere. The process is
indicated

Poj Por _~ % ﬂ‘;p:. -:";F#
*\'%2 Q.ﬁf 9
{'ﬂ) ~
\ AN
P \ \
S e / ,}
e
"
= v
To [ Po .7 Py '
2 (2)

on the T-s diagram as a vertical line from p_, '1'0 to the inlet of the simple
frictional duct and thence along a Fanno 11082 corresponding to a mass flow
v, to the exhaust pressure at the exit section (e) 68 the duct. As the total
pressure inocreases the mass flow increases_and w. ~ "l&> . > vwp o= 0.
The exit Mach number of the unit remains wnatnné at unity3ror Po>P (as
indicated in the figure). The expansion from Pe to Pexhaust region ?&rror
Po > poa takes place in the exhaust region.

It has been assumed in the ahove that the simple frictional duct was
preceded byia convergent nozzle and hence experienced only inlet conditions
corresponding to subsonic flow. Let us next examine (a) and (b) as noted
above (effect of duct length and reservoir pressure on flow) for the case
in which the simple frictional duct is attached to a convergéni-diverging
nozzle vhich may provide supersonic inlet conditions to the frictional duct.
We find now that in order for some falues of duct length and reservoir and
exhaust region pressures aprlied to the flow to be satisfied, discontinuities
in the form of normal shock waves must exist in the flow. This situation

¢ To increase the reservoir pressure at constant femperature will require
codling of the reservoir. Let the reservoir pressure be increased reversidbly
and isothermally then the change in reservoir entropy is given by

a .4%» and since @ € 0 (cooling) thends £ O,

reve
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is analogous to that of a frictionless riozzle operating with a normal shock

in its divergent section.

Effect of Frictional Duct Length in Supersonic Flow,

As an example, assumne a surersonic nozzle - simple frictional duct unit
and consider the effect of (a), frictional duct length, on the flow through

the unit.
unit is at M ¢ 1 and at exhaust region ressure with a mass
wy through 1it.

Initially let the unit be operating such that the flow leaving the

rate of flow

This conditicn is indicated on the T-s diagram below where

the flow rrocess originates at p , T, and proceeds insentropicallyto the

supersonic branch of the Fanno lgne'correSponding to wy and
along this Fanno line to M = 1 and Pexhaust region. Now as

is increased to (2) we find that the new boundary condition
length can be satisfied by assuming a normal shock to occur
duct such that the cambination of duct length preceding and
flow discontinuity produce a Mach number of one at the duct

then follows
the duct length

of increased duct
at a point in the
following the
exit. The flow

process corresponding to this condition is shown by the arrows numbered 2.

M=1
(1) M >
/-—.-‘.‘“‘--‘ ——
o M=1
y—- -4
i I }
(2) M>1 (MQ
= SR Sl
M=l
\‘-___ . .
(3 Moy E(
i . - !—'-
- (4) /1 ML
"‘"——.\.\- ‘o
4
M= 1
{?)‘H‘Ef'/ M&l
..--'-"4"'_ — SR
M&
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As the duct length is inoreased further the normal shock progresses upstream
to the duet inlet, thence into the nozzle until it reaches the nozzle throat
(5). PFurther increase in length beyond that corresponding to (5) reduces the
mass rate of flow through the unit and the flow progresses through the duct
for these cases along Fanno lines of lower mass flows as indicated by (6).

Suprose now a flow corresponding to condition (1) above exists and let
the duct length bde reduced. In this case we find that the stream properties
in the remaining portion are unaffected and as the Auct length is reduced to
zero the flow reduces to that through a convergent-divergent nozzle exhausting
to the discharge region through a system of oblique shock waves set up in the
exhaust region. These conditions are illustrated schematically below. For
(1) the flow proceeds isentropically to the duct inlet, thence along a Fanno

~Pa MEL
TrH—— —:wﬂ;- | =S "
- (1) M>1
#l-"._'-"h..__-_
M>1
"‘--..._____‘_____._. J\"'h-. f
2 M -
IE.--?"" }1 -’f} \,f )'\'\.

H?l

el T

i —F NN
M2
N N
(4) x >’
B e V4 N AN

Oblique shock waves present in
discharge region in cases (2),

(3)9 and (4).

line to M= 1 at (1). PFor (2), (3) and (4) the exit conditions fram the unit
are as ipdicated on the T-s diagram. Notice that Pos P.v P, are each less

than Pexhaust region. The rise in pressure to pexhaust‘ in “theae cases 1is
attained through a series of oblique shock waves set up from the exit of the

duct.

¢t of Reservoir essure in S rsonic 5

As the last consideration of this note, let us examine the effect of

reservoir source pressure on superscnic simple frictional flow. Starting with
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the reservoir pressure of our convergin$-diverging nozzle-simple frictional
duct unit equal to the exhaust pressure, we have mo flow. Now as the reservoir
pressure increases the flow through the unit increases. Finally a Mach of one
is reached in the nozzle throat and at the duct exit. Up to this point the
flow processes for each reservoir p appear on a T-s diagram as for condition
(6), page 14.6. .For reservoir pressures beyond that just giving sonic throat
conditions, a normal shock arises downstneam of the nozzle throat and pro-
gresses downstream as the reservoir pressure and hence mass flow are increased.
A typical flow process for this condition is that of (4) page l4.6. As the
reservoir pressure is increased further the normal shock reaches the duct exit.
The flow process for this condition is indicated on the T-s diagram dbelow.

r— Po .
= av ge®
e .
" -Qa'ip
x
R
; /I - = M>1
| 1 L
| e 7
|- £
1 " Normal Shock at Exit
- T 8

For reservoir pressures above that producing a normal shock at the duct exit
the flow process appears @as for condition (3) page 14.7 with oblique shocks at
the exit of the duct. These oblique shocks became weaker and ideally disappeat
as the total pressure reaches a value producing a duct exit pressure correspond-
ing to the discharge region pressure. This condition corresponde to that of
condition (1) page 14.7. Lastly, with the reservoir pressure increased further
we find the mass flow to increase and the flow Mach number to remain constant,
such that M = 1 at duct exit. This condition is illustrated in the sketch

below. The transition from the higher duct exit pressure to the discharge
region pressure

mo s P,
1]" S
e 1»'9
\ Q e‘* ®
1 \ ‘ 5°% ¢ -
! \ * —
P i s —— et ’9‘59 P [
i - N ~
-~ - ]
e e - - i
t 7 i
| e =S
| - , // 1

NS

8 External Expansion
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takes place in the exhaust region. The various flow processes vbtained

as the reservoir pressure is increased from that corresponding to the exhaust
region pressure to that giving the condition indicated in the sketch above are
shown on a single T-s diagram on the following page.

In this note the Fanno line has bdeen presented and its use 1llustr;ted.
The effect of

(a) frictional duct length
and (b) reservoir pressure

on the stream flow prorerties of a simple frictional duct attached in turn to

a convergent nozzle and a supersonic nozzle have been described. In the succed.-
ing note the simple frictional flow will be investigated analytically and re-
lations between the flow stream properties and the stream Mach numbers will bte
obtained. These relations will permit a simple quantitative analysis of the
flow under considermation.



MB 257 15.1

Lecture Note 15
SIMFLE FRICTICNAL FLOWN - II

An analysis identical in method to that of note 10 only applied to
simple frictional flow will be made in this note. It will be shown that a stream
property at any given atation in a_simple frictional flow divided by its value
corresronding to the point where M = 1 on the Fanno line of the flow is a
function of the Mach number at the given station. Thus, for example, the
properties of the satream at section 2 of the flow unit depicted below divided
by the starred

'r — -
. [
r, \_
o -
Po, —7 M3< 1
Te |— - _J (2) 3)
== 7
] J p3 = Pexhaust
S
? -
- o
values of these properties give
) 4
(57 = £3(Mp) (;.—) = £3(M;)
2
Po)) . B\ = f tc.

Further it will be shown that the duct length bepond station (2) required to
cause the flow to attain a -Mach number of 1 at the duct exit is a function of
Mach number at section (2). This length will be called mez and we will find

that this length multiplied by the constant 4f/D where £ is duct friction fac-
tor and B the duct diameter gives a relation such that

(%f. ]m;) 2= f("z).
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To obtain the above relations we write equations involving the stream
properties of the flow in terms of logarithmic differentials. Towards this
end let us first apply the momentum equation to the flow under study and
reduce it to a form involving logarithmic differentials. We have

3«-:"1 -F
and between any two sections separated an infinitesimal distance dx
§F=-ar’
Now l‘:pA‘f‘PAVz =pA+ w?V

80 =Adp+wdyVv

and ijor case of A A= O 4s due only to frictional forces and is given by
(figure below)

Sr=7aa
where Z'-'-‘ sheuring force of duct on fluid per unit of duct wetted area.

A'= wetted duct area.

TdA

W2V IRENIRY I VIR IIY o [y // REOIITININ NI

|
2 pA > F‘“‘ (p *+ adp) A

l
TXEVTIIIIII N 002,70 ,é "1l /(//// L7770 0077707 17477

T ;/ v

dx ,'/” Av 2 Beveloped surface of duct
e

7

I

~—-— ————

Fé’? is uaed here to indicate an infinitesimal force, of fluid on dAuct, and
is not an exact differential as compared to 4 F.
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Therd follows after substituting into equation (1)

Caa,=-Adp-wav, (11)
Introducing the duct-fluid coefficient of friction defined as

f =

L
ot il

2

and the hydraulic diameter D defined as
D=y x-gectional ares

wetted perimeter

Ax

D= A -
hdA7dx = LA aa_ *

we obtain 2

‘Z’dAw ==f‘£2%}_. AA%E- A

Placing this result in (ii) the momentum equation takes the form

Adp-l-de'rfez—vi 9% dx = 0.

Dividing this equation by Ap we obtain

ap R av PV dx) _
Ll LT L (Max) = o

where O
— = !E.—'EZE::kM?
p _ RT =~ KRT
8o finally
dp |, 2 AV, KM (4rax) _
p o vfz(n)‘° (111)

This equation along with those obtained from the equatiom of state e#8c. give the
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following system of equations to be satisfied simultaneocusly in the simple
frictional flow of a fluid,

c_lpp_ =d P.,g'rz (state)

k=l 2 2
aT 2 aM
ai , e_ 2 - 0 (energy)
T '3 +—lk5 M2 M
d F’+%1= 0 (continuity)

da

a €. aM® _ P
-pn+ - .,.JE;L = 2= —;ﬁ (total pressure)
Lo 088 (580 S
;‘ﬁz_z. = 2 gvl S %? (Mach number)
%zz %*ng_ féﬁ (impulse function)
ds _ 4T _ k-1 dp (entropy)

cp T k P

This constitutes a system of eight equations in nine variadbles -p, p s T M, V,
Pos X, £, K. We select one as the independent variable and solve for each of
the remaining dependent variables in terms of the independent 'ariable. Select-
ing,therefore, 4fdx as the inderendent variable these equations mey be com-
bined to give: eagx dependent variable as a function of QL;. As an example

D

consider obtaining the relationship

%Ff (kax)



ME 257

One procedure is outlined herewith.

(a) Using the state equation obtain p, AR, T related
(b) Using the momentum equation obtain V, x, /2, T related
(c) Using the continuity equation obtain V, x, T related
(d) Using the Mach equation obtain M2. x, T related
(e) Using the energy equation obtain M2. X related.
The result is (1+ k-1 M2
am? _ l : ufax .
M 1 -M D
There are summarized below the relations between all independent variables
and 4fdx .
4fdx/D 2
B v R, <l . e . .
aR | wP fkl
M 1 - M°
. e =
% '
| av _wf_m_ |
oy E-M i
i :
) dp Y- (N m2]
' p 2(1 - Mm<)
ar M
] 2(1 - M2)
- ,;. c————— :
ar | _ _k(k - DM i
T : 2(1 - M)
i kg
d i
T S R
' Po ; 2
j— : P S " ———
f . {
e L
g F ! 2(1 + xM2)
% ——r o —— o e
i i :
. ds ] (k=1)M° !
] cp 2

U —— —
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Tne above results indicate that the sign of variation of each of the stream

properties M, ¥V, p, A, and T with duct length x depends only upon the flow
Mach number. Thus, for example,

and friction accelerates the flow velocity in subsonic flow and decelerates
the flow in a supersonic stream.

4lpax/ apd the ratio p/pe, T/T* eto.

It is possidle to determine the pipe length required beyond any given
station in a frictional flow to gife M= 19%® {n the flow by integrating the

relation a2
“l?i: f(Mz) —Mz—

from any pipe station L and Mach number M to the pipe station L® where Mach
number is unity.

‘_\ M M=1
Wy |
ST e |
k—L 3¢ (L* - L)=Lmax - ?ri
—— e et Le >

During the integration we assume f to be constant. Now

%%

&
% IL dx = g Lf.Ma
! wPa e L)

¢¢ To obtain M= 1 without o.ffecting the initial values of the stream prop-

erties in a pipe would require proper ad justment in exhaust region pressure
as the pipe length is increased.
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Let y:l?

o 2kl

then X 3
-1 -y o _k -\ 4 - 4y
%‘“"L)"fuuf ay) vy*° k fy?(l-ray) . J y(1 + ay)

y

Using partial fractions we find

l a
j ay . _1=-Y_1n H
y Y tea) 7 e

'__d!__g_ At ay
fy(l'ray = & (14'-);"

There is obtaimned finally

Mlpax 1 - k41 ,, | (k
D kH2 2k (1+%1M2 *

This relation is plotted in the accompanying sketch. This graph shows that
the effect of friction on the stream properties is much greater in supersonic
flow thah in subsonic flow. For a pipe of 1° diameter with an f of 0.01 the

2 [ ] o -r-'-"" ”

E‘gu 1.0

0 T 10 2.0

Mach No.

*Tabuléted in "Gas Tabdbles® pg. 157
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figure indicates that to cause a supersonic flow to reduce from M~ °° to

M= 1 requires aﬂﬂ!: 0.82 or a length of -_9-'-8—2—Ll & 20 inches.
o s &h of Loax =< 0.01

Whereas in subsonic flow the effect of friction is such that a 20 inches pipe
length is required to change the flow Mash number from 0.65 to 1.0.

To illustrate the use of the ahove relation consider the following
example., Assume a flow exists as shown below with £ = 0.0025 and pipe
diameter D = 0.5 inches., With Ml known it is desired to determine the exit

H\‘l’ (2) N=1
w. °l5 . L |
‘*2—-“—1*1-2 < Linax,™>
- Imxl T =

Mach number from the pipe of length S50 inches.

Solution:
M, = 0.5 gives(ﬁpll) > = 1.07 (Table 42)

xﬁlﬂ-—- me]_ = L1-2

8o, multiplying through dy 4£/D,
- Emg) -(ﬁl_-é)
D 2\ D /, )
= 1,07 -'!ix_gogﬁ x50 = 1,07 = 1

4fL ﬂ
max ) _
< D )2- 0.07
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wvhich gives M2 = 0.80.

The interpretation of the relation

E;_m_z - f(M)

in conjunction with the Fanno line is that for a given simple frictional flow
the pipe length required to cause the flow to rroceed from a given state (a)
on the Fanno Line to the state corresponding tg Mach of one is a functiom of
Mach number at state a. Pog ~Po
o | L P ¥
o ! 5

Ta [ ‘%fl

The relations given on page § of note 15 may be cambined to give

dp . - o
p =808 55 22 =8500) 9§

%2:42(»?) % %l:gb(nz) 4"% otc.
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Bach of which may be integrated between (M2, p) and M= 1, p = p¢ etc. to
glive

%: ‘tl(n) %:. = 13(“)
L= t,m L= £5(M) eto.

Thus we find, for example, that the total pressure at any station (a) in sim-~
ple frictiomal flow divided by the total pressure corresponding to M= 1

in the flow depends only upon the Mach number at (a). The ratios p/p® ete.
are plotted versus Mach number below and are tabulated in ®@es Tadbles® by
Keenan and Kaye.

—— e e s

e e e e e = E.D

o i.0
Mach Mao.
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As an example of the use of these tables consider the following experi-
mental set up used to determine £ Dbetween station (1) and (2).:

\% o e 1,

‘F
) e —_— - —
(1) (2)
P = 35 psia P ™ 25.8 psia
p‘:.li= 50 psia
Solution: Po; = 50 psia
e
p°l *0.7 so M = 0.73(Isentropic Table) - Po, ™ 50 psia
| “o_ 7‘/
with }’i = 0.73; g—.— =1.426 (Fanno Table) I P, = 35 psia
'( )(&‘) P1 1.426 "535_ =1.05 T - b3 2 psia
-~ I p' =
whence M2 = 0,955 (Fanno Table) 3 s 24.6 psia
with M, am( §=) known we find ¥
: 2
ﬁ‘_ﬁ‘u_-z = o.56; Cmex = o006 L
1l 2 B

Lmaxy = I‘1 2+ L 'ma X2
or multiplying by 4£/D we have

o sl

giving (ﬂ%—'-g’o.156 - 0.0026

from which we find £ = {0:12300.3 = 0,0019.
' 4 x 10 9
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Lecture Note 16
SIMFEE 'rb FLOW - 1

Thus far we havs considered the steady one-dimensional flow of a perfect
gas with simple ares. change and simple friotional effects respectively.. We
analyze next the flow of a perfect gas with simple heating effects. This type
of flow may alternatively be called simple To flow since we treat as our in-
dependent variabdle the total temperature To. This is controlled through heat-
ing as noted in the steady flow energy oquntion with no shaft work

S -

cp = '1'02 1'01
By simple !'o effects then we mean the following to odtain:

constant area (dA = 0)

no friction (ar = 0)

no shaft work (47, = %Q)_

P

Let us determine the locus of fluid states corresponding to simple 'I'
flow on the T-s diagram and discuss the characteristics of such a flow.

Rayleigh Line

Consider then the flow of a perfect gas in an adiadbatic frictionless
constant area duct. No variation of stream properties would exist in this
flow. If, however, downstream of same station (1) the total temperature of the
stream is caused to change by the presence of heating effects as depicted in the
figure below then the stream propsrties will change. A relation detween the
stream properties at (1) and the pressure and temperature downstream of (1)

Flow _

® T Fr _Tr T T
«<——No Bffects ————>| ¢ Heating Effects —_—>
(1)

may be obtained by‘ compining the mamentum equation withh the continuity
equation®, Thus,

A vV,2=p + Ly2

v-/OAV

sCampare following development with that of note 14, page 14.1. Notice the
analogy wvith momentum equation here replacing the energy oquntion of note 14.
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replacing V in momentum equation by(% & from continuity equation gives,
after using
L=,

2 w T

For given inlet conditions this equation represents a relation between
pressure and temperature that must be satisfied at downstream points in the
flow. By assuming values of pressure to exist downstream the dorresponding
values of temperature can be determined from the above relation. These values

of p and T can then be used in the following equaticn to determine the required
values of entropy

swoc 1nX <R luR-<4as,.
“% T, Py 1

The temrerature entropy locus of such points that satisfy the continuity
~and momentum equations for simple ‘!‘o flow is called the Rayleigh line and is
sketched below.

We can imagine the heating process in our flow to occur in a reversible
manner 50 that between station (1) and any domstream station the entropy

change is given by
T
- a9
s S } (T)RN

1l
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This indicates that heating produces a flov vwith downstream points at higher
entropy and a heating process would therefore be in the direction shown on the

temperature entropy diagram. Similarly a cooling prooess produces states of
lover entropy.

The Rayleigh line indicates that it is impossidble t0 go from a sudbsonic
flow to a supersonic flow by a sontinuous heating process since heating dbeyond
that point that gives M =1 would require a decrease in entropy. It does appear
however that heating the flow until a Mach Number of one is odbtained followed by
cooling would produce & transition fraom subsonic flow to supersonic flow. This
situation is analogous to simple area flow in that a decrease of area to Mach
of one followed by the reverse effect of an area increase produces a transition
from sajsonic flow to supersonis flow ia simple area flow. It seems quite
improbable, however, that one could odbtain experimentally the transition from
subsonic to superscnic flow with heating followed by, scoling. The main reason

being due to the' fact that frictional effects in a real flow with heating can
not be neglected.

Consider a subsonic simple flow in which sufficient heating effects are
present to produce sonic exit copndéitions from the duct. This process is shown -
on the figure below where (1) represents the inlet conditions to the duct and (2)
indicates the exit condition corresponding to a Mach of one®., What happens

Top —1—
TOE
Po _
'.I'nl 1 S ~
_._‘_..-l"'"
. QI —ive ‘(2')
(1
(2)
Q = ﬁp{Tnz - Tﬂl)
\—JI + & 3 3 ¢+ L
Po —— M, =1
b
(1) (E)
_ - —

.‘It is assumed here that the exhaust region pressure is at the value required
to give this result.
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§f there is heating in excess of that required to give sonic exit oconditions?
Experiments show that this further heating yroduces a read justment in the
flow whioch results in a reduced mass rate of flow with Mach one still main-
tained at the exit section of the duct. Thus the new flow process would

lie on a Rayleigh line such as the dashed one in the figure with the flow

proceeding from 1' to 2' with T _,” T ,. Thus we find a choking phenomenon

to occur in simple 'l'o flow as we 1l as ?121 simple area and frictional flow.
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Lecture Note 17
SIMFLE 'l‘o FLOW - 'IX

We consider in this note the prodlem of finding expressions relating the
stream properties in a simple T flow to the flow Mach Number. The procedure

to be followed is that which vag used in notes 10 and 15. We will find
relations such as

G.:L,)ﬂ, (M) G:: = £,00
(g—,—): £, (M) (;L,) = £,(0)

where the starred quantities refer to the stream properties in simple ’1‘0
flow where the Mach Number is one. Thus referring to the temperature

entropy diagram below we will £ind that T_at (2) divided by 'roo of the
Rayleigh 1ine is a funotion of M, and eimflarly for the ratios

@/p‘ e eo/pc,) o+ and ('r/‘!" 2

® ——
.° —¢
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The following equations can be written for simple To flow:

dp_ap , ar
D f + <5 (state)
‘—,I'f' + —= Em— =32 (total temp definition)
1+ 5w °
%o_'_ dv_v =0 ' (continuity)
4
dp o m2 Q-M—Z- .-_-—p2 (total pressure definition)
Poa4 Kb M Po
;‘522— = aT (Mach Number definition)

d':22=0 (impulse function definition)

(entropy definition)

These seven equations have the eight variables p, A, T, Hz. T .V, 8, and

Po- Select 'ro as independent and find by simultaneous solution of the above
system of equations how the remaining stream properties depend upon the total
temperature variation. T7The results are summarized in the following tabulation.
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TO

(1+ ) L+ k—;,1-142)

1-

g

s e g i ¢« B

m?(1+L,‘;l M2)

y -

e -
| P 1 -0
a
Po _ e
Po 2
e a -wf) 1 +51 4
1 - M
g:'; 1+ 5L
T -
k-1
av 1*"??-152
v 1 = M2
o !
%: ; 1+ Ko

Table is8 read:

de . .

e (1 f“—;—l-n?)

P

1-M

dT2

To

17.3
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Some of the more important conclusions that can be drawn from this tadble
are: ,

d 2
Lo - _ MME
() 3, 2

ok’

thus total pressure decreases with increasing To (heating) and Po
increases with decreasing T, (cooling)

=1-M ¢
A TR T

thus at M= ], %% = 0 and entropy is maximum at M =1

aT, 1 - M2

thus effect of heating on Mach Number is of opposite sign in subsonic
and supersonic flow.

Other conclusions can similarly be drawn with the aid of the differential
relations tabulated.

.
TQZTQ  Po/Po? etc. as functions of Mach Number

Notice that we have found above the relation

aMm° _ a

e =5
or

T, 2

This result may be integrated to give T,/T,® in simple T, flow as a function of
Mach Number. Similarly we have from the above table

cl;:;i _ d'I‘E
Po f2(M) To

or
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wvhich wvhen integrated from p, to p,® and M to M= 1 gives Po/Po® in terms of
Mach Number. Proceeding along these lines one can get the relations given on
page 210 of the Gas Tadbleg by Keenan and Kaye. These relations are tabulated

in the Gap Tableg on page 148 and following. A plot of the tabulated stream
properties versus Mach Number is given bdelow.

2.5 : . T
~ |
.
.
'\
2.0 A 5 T
N\
. P/p*
h"
N\
1\5 A n .._ﬁ_.-r"
Po/pe® 3 s
B e - i _,_,..-—-"'- =~ o' "0
l - L . . —— -
1-0 r ¢ ,..rr-"': ‘:“1“'-.__‘_ ""'-1-..__“_ —_— Tnﬁu‘
m ' g T s = —
/ oﬂo - - ‘--‘-\_"‘"--.
0.5 e
/ -
s p/p"'
/ : :

0 05 1.0 1.5 2.0

Mach Number

Notie@ that the static temperature ratio reaches a maximum just to the left
of M ™)1, This coarresponds to the maximum point attained on the subsonic
branch of the Rayleigh line.
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Lecture Note 18 SUPERSONIC DIFFUSERS

Diffusers, or passages wvhich decelerate the stream to low velocity, are
important elements in such different devices as compressers, wind tunnels,
and ram jets. The supersonic diffuser offers certain unusual problems not
met with in the design of subsonic nozzles.

At first thought it might appear that a supersonic diffuser could bde
designed as though it were the reverse of a converging-diverging nozzle.
Two difficulties arise, however. First, if there is a supersonic nozzle
within the system, it is virtually impossidble to design properly the throat
of the Aiffuser because fricticnal effects between the nozzle and the
diffuser require that the diffuser throat be larger than the nozzle throat.
If the dAiffuser throat is made slightly too small, supersonic flow will not
be attained in the nozzle; and, if the diffuser throat is made slightly too
large, there will necessarily be a shock somewhere within the diffuser.
Indeed, even if the two throats did match perfectly, it appears that the
combine system would be unstabdble.

A second and more serious difficulty arises. Most flow systems start
from rest and accelerate to the operating velocity. If we focus attention
on a supersonic wind tunnel as a particular example (Figure 1) the discussion
of Lecture Note 9 indicates that a shock will meve down through the nozzle
as the pressure ratio across the nozzle is increased. However, a normal
shock reduces the stagnation pressure of the stream. It is evident from
the relation J_‘

w:I 29 - wN Ty _ slmii

AT, = £(M) evaluated at M =1.0, i.e., T-?:' = 0.,0166 e =
the product of minimum area and total pressure is constant for a constant
flow rate and stagnation temperature. Thus

AP, = LA &R (1)

0.0166
During the period, therefore, when the shock passes through the nozzle and

test section, the diffuser throet must be larger than the nozzle throat.

The minimum ratio of the two areas necessary for starting corresponds to the
condition of greatest 1loss in stagnation pressure, that is, to the condition
wvhen the shock is in the test section. Ignoring frictional effects, the
minimum ratio of diffuser throat area to nozzle throat area is found by using
Bquation 1. Referring to Figure 1, we get

.(A‘x) = (pox) (2)
A®x/ min Poy '(Mx)mx
The limiting contraction ratio for the diffuser, that is the minimum

value of Apjrer. throat/ADiff. inlet 18 shown in Fig. 2. For comparison, the
contraction ratio for isentropic diffusion to Mach Number unity is also shown.

At the limiting condition, the diffuser is baroly able to "swallow® the
shock and the Mach Number at the diffuser throat is unity when the shock is in
the test section. If the dAiffuser threat is smaller than required by (Eq. 2)
either a normal shock will stand in the diverging portion of the nozzle or
there will be mo supersonic region at all in the nozzle.
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These ideas are illustrated grarhically in the T-s diagram, Figure 3.
In interpreting this diagram it is well to remember that all states on the
same Fanno line have a common stagnation temperature and flow per unit area.
A change in cross-sectional airea has associated with it a shift from one Fanno
line to another. It is clear from this diagram that during the "starting"
condition thers is a large loss in_stagnaticn (ressure and a consequent in-
crease in the area required to rass the flow. The path of states during
the limiting starting condition (at least while the shock is in the test
section) is from x to y to ®y to oy.

Assuming that the diffuser throat is made sufficiently large, the shock
will be able to enter the diffuser.” Its position during operating conditions
will depend on the back pressure on the diffuser. From the standroint of
efficiency, the shock should be maintained at the diffuser throat, for the
shock will then occur at the minimum Mach Number in the diffuser. The best
design for a one-dimensional, surersonic diffuser of fixed geometry has,

Therefore, a minimum area barely large enough to pass the flow during starting

conditions, and has the shock at the minimum area during operating conditions, .
The best starting and operating conditions are shown in Figure 1 and 3. During

operation, the path of states in Figure 3 is from x to x' to y' to oy'.

In practice, the shock is maintained slightly downstream of the throat
during operation. This is done because, with a fixed back pressure, the
shock is unstable in the converging rortion of the diffuser. For example,
if the shock were maintained exactly at the minimum area, a slight disturbance
might make it move temporarily into the converging section. But this would
anguent the loss in stagnation pressure, and, if the back rressure were fixed,
the shock would move further upstream. This would make the situation still
worse, and the shock would move upstream progressively until it came to rest
in the nozzle at a point where the stagnation-pressure loss in the system
matched the back pressure on the system. In order again to obtain supersonic
flow in the test section, it would be necessary to lower the back pressure
to the minimum value recuired for starting.

To insure that a su;ersonic diffuser of fixed geometry will start, the
throat must be made slightly larger than the limiting value to account for
inaccurate estimates of the effects of friction, of the departures from one-
dimensicnality, and so forth.,

Thus, because practical considerations require that the best design be
comprised by an enlargement of the throat and by an operating condition with
the shock at a Mach Number greater than the minimum in the passage, the
practically attainable efficiencies of such diffusers fall short of the
values which seem possible in principle.

The loss in stagnation pressure during operation is much less than
during starting, as shown by Figure 3, In the case of a wind tunnel, this re-
duces the power consumption during operation, but the pressure ratio of the
conpressors and the maximum power are determined by the stariing conditions.
Thus, as compared with a simple shock-type diffuser, the contraction-type
diffuser is of advantage only in that it recuces the power expenditure during
operation.
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Some of the starting difficulties mentioned above may be avoided through
the use of diffusers with adjustable throats, by temporarily overspeeding the
stream upstream of the throat, by pushing the shock through the ttxoat with a
large pressure pulse, or using oblique-shock diffusers.

The most common definition of diffuser efficiency is parallel to the
definition employed for compressor efficiency. Referring to Pigure 4 and
assuming that the velocity leaving the diffuser is negligidle, we define

(Ah)ideal . b3 = h)
DS V22 =
77 (a h)actual hy - by ’(3)

where state 1 is the actual state entering the diffuser, 2 is the actual state
leaving the diffuser, and 3 is a fictitious state at the sctual leaving
ressure but at the entering entropy. For a perfect gas Equation 3

ecomes 3 T (T3 = 1)
SN S vanlil
7 D= T, =Ty vy ﬂ“p

and, since T 3”1 - (Pg/pl) ; .
and .
s k-l
we get, 37!) _ (p?_/p]) k -1

.’5_51 "12 (4)
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Consider now, as a further illustration of the supersonic diffuser
operating characteristics, the flow through the arrangement of Figure 1 as the
diffuser throat area is increased from zero area up to and beyond the area

required to start the diffuser.

It will be convenient and helpful to show

the variation of diffuser throat area on a graph of area ratio versus inlet
Mach number as given in Figure §°.

Area Ratio Req'd for
Starting Tunnel

3 @
o0
E'f
al:
-
i — d & — e | ——
. swéIlowing ;
e W .
disgorging
Aajer. threat /
Aaire. inlet ~___
/ Area Ratio for
Isentropie Diffusion
From H!.nlut to M=],
a
ﬁd-llgn
[-—-—-—-——— B ——— - - i =.
0 l.0 2.0 3.0
Mintet = Mtest secsion

Figure §

sFigure § is not to scale also Figure 4 is Figure 2 with the absissa

extended to zero.
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In Figure § the variation of the diffuser inlet Mach Number as the diffuser
throat area increases is along the line from (0) to (d) thence to (e) and (f).
The variation of inlet Mach number as the throat area decreases from (f) s
along the line (f) to (h) thence to {(b) and back to zero. In the discussion
$o follow we will assume that the back pressure is ad justed to t lu -
quired to give the condition described through the unit.

k’ nozzle [ test section —*‘_ diffuser _)I
I Je '
N r\ ] S |

A
ST !

[ ]

[

@
case (0) = no flow

For the case of zero diffuser throat area no flow exists and M=0
throughout the unit. Now as the throat area is increased from a zero value
the flow throughout the unit is subsonic preceeding and following the diffuser
throat with M = 1 at this throat. This condition (case a) exists until the
diffuser throat area becomes equal to the nozzle throat area and is depicted
schematically below.

__t' nozzle —>“ test aectio‘ﬂ’l“ diffuser Il
M<L ) i M<Z)

T~ B

case (&) - Ajier. throat< “nozzle throat
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When the diffuser throat area equals the nozzle throat area sonic flow
will exist at each throat with M £ 1 elsewhere. Assuming the test section is
built for a design Mach number of 2 the throat areas will be equal when

Adirf, throat _ (t_‘)ruz = 0.595.

Apire. inlet

Case b is shown herewith,

!(-—-nozzle "**->]<-—teat section— diffuser —

|

M<1 ‘ M<1 | M< )
e N N i, N

= Anozz.’l.c throat

case (b) - Ay re throat

With the area increased beyond that of case (b) a normal shock occursy
in the divergent section of the nozzle and moves downstream to the test
section as the area increases from condition (b) to (d). An intermediate
condition between (b) and (d) is illustrated in the following figure.

r-nozzle —‘T—_—‘test section_aj'k—- diffuser—--""!
e \—l—/_ | \/ﬁ

| % ML )

I . __/\

sasei(c) i (A aire. throat) > (A airf. throat) > *nozzle
c

starting throat
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An infinitesimal increase in the diffuser throat area beyond that area
(d) for which the normal shock is in the test section gives a swallowed shock
as the inlet Mach number goes from a sub to a supersonic value and the
diffuser is started with a normal shock at its throat. A further increase in
throat area from (e) to (f) does not affect the inlet Mach number but does,
of course, increase the value of the diffuser throat Mach number.

Condition (f) is shown below

k nozzle ——1‘- test section —‘*“ difi‘uae"'J

| M >1 M<1
condition (f) - Agsee. throat™ (Aairr. throat) starting

If, after the diffuser has started, we decrease the diffuser throat area
from (£) to a value (g) we £ind that the inlet Mach number remains constant at
the design value. As far as geometry is concerned case {(g) amd case (e) are
identical. Thus for the case (g) we have schematically, the following.

test
r—— nozzle ~—)‘é-—— saction 415 aire

| M>1

—/M-tl\ B i T

> (Aggee, throat)g”Anozzle throat

case (g) - (Ay5ee. throat) starting
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Although case (s8) and case (g) are identical gecmetrically, the flow
processes existing for the two cases differ markedly. This results from the
fact that the geometry corresponding to (e¢) and (g) gives a different flow
depending uron whether that geametry is approached during the estadblishment
of the supersonic inlet (when shock wvaves of necessity occcur ahead of the
diffuser throat) or whether that geometry is attained after the establishment
of the supersonic inlet flow. In the latter case no shocks preceed the
diffuser throat.. :Thus is-it possidle to pass the supersonic flow through
the diffuser throat as long as its area is equal to or greater than the nozzle
throat area since the total pressure remains’ constant between these throats with
no intermediate shocks,

When the diffuser throat area is decreased to h, sonic flow occurs in
each throat., With an infinitesimal decrease in diffuser throat area from
condition (h) a shock arises immediately ahead of the diffuser throat and
advances into the oncoming flow until condition (b) is attained as depicted
schematically above. Purther decrease in diffuser area reduces the diffuser
inlet Mach number from (b) to (a) to zero.

Yixed cmet ersonic in et

The operating characteristics of a supersonic diffuser when used as an
engine inlet can be illustrated in a manner similar to the discussion of the
preceeding secticn. Consider the operating conditions of a supersonic inlet
of fixed geometry as the engine flight Macii number is increased from zero up
to its design value. In Figure 5 we show the variation of diffuser inlet,

Isentropic Area Ratio, A/A®

Ldaﬂab —— _ a4 ¢Shock Swallowed During Acceleration
Lof* —FF —er — kX
. | Deceldqrating

Ajire. throat

Asirr. inlet

! [’
Py I

0  0.57 1.0
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Mach number with the area ratio (Aajee. th./Aaiff. inlet)e NOtice in the

discussion to follow that the diffuser inlet Mach numdber during some operating
conditions is identical with the free stream Mach number, Moo . In general,
however, the flight or free stream Mach number is not equal to the engine
inlet Mach number.

We will examine the phencmena in the diffuser as the Mach Hiumber, Mes ,
of the free stream is brought up to a value equal to and then greater than
the diffuser design value of 2.0. Later the phenomena will be discussed as
Moo is decreased from a value greater than 2.0 to a zero value. It will be
assumed thro out that the back pressure on the diffuser is such to give the

operating condition specified at any instant,

For a design value of Meo™2 the diffuser area ratioc required for start-
ing is 0.822 as given in Figure 2., At zero free stream Mach number there is
no flow through the unit and My;)4¢= O corresponding to (a) to (b). During

this interval of operaticn we have subsonic flow throughout the diffuser with

“SM:lnlot as depicted below

—_— -
e ~ZZ
Moo iy ! M<1
: M

Meoe N

case (a) to (b) - Mlnletg

Moo (back press is held at proper value to
give this state of affairs)

When the free stream Mach number becomes equal to the subsonic M
corrgsponding to an A/A* equal to (Ainlot/Athroat)' condition (b) exists
ané the throat Mach number is unity.

_—

v

Case (b) - M3 My, ¢+ Mach number corresponding to an A/A®

A
ipleb. - .22 18 M, £ 0.57
throat

This case is shown above,
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Since Ath#‘*‘-‘t-=0.822 we have for case (b) an i}n_lﬂ - 2  =1.22 so that

Afnlet e 0.822
- =
Mo M et 0.57 as found from the isentropic tables.

ASs the free stream Mach number is now increased beycnd M‘,Q= 0.57 the inlet
Mach number remains at 0,57 with M= 1 in the diffuser throat. The inlet Mach
number must remain at 0.57 since A/A® - irnlet = & fixed value. Thus

Athroai:

between a free stream Mach number of 0.57 and 1.00 the condition shown herewith,
wherein a free stream diffusion jreceeds the inlet _a_p_pliea.

- _F____J___,..Iﬂl’{//f |

1.0?Mao > 0.57 Minjet = 0.57
P - I

P L.
-

Case (b) to (¢) = 12 Moo 2 0.57 (A free stream deceleration from M

to Minlet occurs ahead of engine as

stream tube diverges.)

When the Mach number of the free stream becomes equal to one the area of
the stream tube which handles the air going into the engine is equal to the
engine diffuser throat area as indicated below for case (c).

J T o - T T

1.0 A5 Atproat Minlets 057

Case (c) - M1 (Free stream tube area carrying air that entera
engine diffuser throat area)
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With a free stream Mach number greater than one a normel shock stands in
front of the inlet until M is increased ur to the design value of 2.0. The
intermediate condition is shown below.

Case (c) to (d) - 1.04MS 2

When M = 2.0 the diffuser starts and the shock is swallowed doming to
rest in the throat of the diffuser - sketch below.

L

Y

'

= external oblique shock

case (4d) - M. = 2,0
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As M becomes greater than 2.0 the shock remains swallowed if the back
pressure is maintained sufficiently low.

Summarizing the operating characteristics of the inlet during the
acceleration of Moo from 0 to 2.0 we have

(a) to (b) - M__= Minlot
(b) to (c¢) = Mao increases and Mjpjet Femains constant at a value corres-
ponding to H'b.

(¢) to (d) = Mg, increases with normal shock occuring ahead of inlet and
Minlet= My,

(d) and adove - shock is swallowed.

With a deceleration of Mge from M%E 2.0 to (e) the shock remains swallowed
until Moo equals the surersonic value of M correspronding to A/A®=1.22 at (e)
or from isentropic tables whan M =1.,56. With MoF1.56 the shock is disgorged
and “'uxlet assumes a value of sz 057.with a normal shock occuring in front

of the inlet until Moo becomes less than one. As the free stream Mach number
be€omes less than one we have a progressiocn of states from (c) to (b) to (a)
with the conditions already described for the acceleration from (a) to (e¢)
applying.
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Lecture Note 19
Stoadily Moving Shock Waves

Prodblems in which a pressure wave is moving at a uniform rate through
a fluid initially at rest may be handled by using the methods of lecture
note 12, on the mermal shoek wave. The equations ef note 12 are applicabdble
if the ebserver moves with the normal shoock wave and if the gquantities in
the boxed equations refer to quantities relative to the moving observer. This
involves changes in_only those quantities which contain a velocity term,
e.g8., Mach number, stagnation temperature and stagnation pressure. Note that
the static pressure, stream temperature, and sound velocity are the same
for either observer. Also the discontinuity moves with a velocity Vi relatipe
to the observer at rest.

The figures belowv show the steady flow through a discontinuity which
is fixed relative to the observer and also the discontinuity advancing into
air at rest relative to the observer. The steady flow through the station-
ary wave front may be transformed to the pattern of the moving discontinuity

tetionary: 4iscontinuity moving discontinuity
/74 yi o I DI J7/07 77

stationary

Px : Py> Px gas | (Vg = Vy)
______,ﬂvx | — v&ﬁ(vx (_r__vx —_—
Mx l' MI< My Px | P y > Py
77777777 77777777777 7 77777/ /777777777777‘7777/_77777777'/'/7
Observer riding into wave front Observer riding with gas ahead

of wave front

by imagining the observer moves with the low pressure gas. This observer
sees the wave front moving to the left with a speed Vi, and he sees the
pressure in the stationary gas rise from py to as the wave front ad-
vances into the stationary gas. The gas behind the wave front travels
toward the front with a velocity (V, - V_), and, since this is less than

Vi. a particle of high-pressure gpsxtallg further and furiher behind the

front.

In order to make the boxed equations of note 12 applicadle for an
observer at rest with respect to the gas preceeding the wave front, alk
quantities containing a velocity term must be modified in accord with the
change in coordinate system. Suppose we denote by primes those quantities
measured relative to an observer who is at rest with respect to the gas
rreceeding the discontinuity. Then we may write

Px' = Pxi Py' = Py
Ty' = Ty Ty"-: Ty
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My = Vy/ay
Mx'==0
My = Vy/ay
Vv - ¥ &
o X =% _ - ==
MY 8y p&’ iy Mx
T = Ty (1 &5 sz)
Tox"'rx
v 2
T = T, o+ ¥
y ‘?’hp
T =9 k-1 1)2
o, v f1r 3 (My*)

X

Po,'s Py (1+k5d iy 2) k-1
L
L !:l [] 2 -
Poy = Py [1+ 2 M )]k *

Through the use of these relations and the boxed equations of note 12
the shock relations for a moving wave may be found. It is worthy of note
that the change in stagnation temperature is dependemt on the observer's
motion, as indicatea in the following expressions.

v.2 - v.2
AT, = Top = To,~ 'r,-‘r,-r-l'-———‘-z o =0

AT "= _ T'= T g S!iL:.!E?f
o " %oy T Togx 7-xf2op

and since AT =0,we find

151;. = 'ic'x - 'i)

°p
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To illustrate the application of the foregoing consider finding the

change of stream properties across a wave front propagating into a stationary
eas with a wave velocity of 2000 feet:per sec. Let the gas ahead of the wave
be at 20 psia and 500°R.

We have then the following schematically.

2000 ft/sec
Lt 4L L] ;‘ VDI NININIINN
p&': 20 psia Vy'g k4 'roy" ?
T, ' = S500°R | p": 4 poy'= ?
Vx": o 'I‘r":. ?

777 /777777 7777 7 77/7777/7/77 7777/

To solve the problem we reduce it first to one for which the normal shock

equation of note 12 apply. This is done schematically in the figure below
by taking the point of view of one traveling with the wave.

WIGZIII NIV ITEBI VNIV NI IIIIN/I NI,

Vx=2000 f£t/sec v =9 "’: ?
‘ -

T, = 500°R Ty = ?

Px = 20 psia Py = ?

[/ 7 7777777777777 777777 777/ 7 /77

The latter prodblem is easily solved and the properties behind the wave front
advancing at 2000 ft/sec

o at 2 t can then de found through the equations presented
above. The solution to the problem proceeds as dbelow.

e, e

From normal shock tables then

We have

)& = 0.612

v\ A
<?:>’75: = 2.4 simce OV, = AV,
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Pp. T
- of 3 -
-lpx 3.7; -x,rx 1.55

= 2 - .
v, = %03 = 834 £t/sec

Py = 3.7(20) = 74 psia

Ty =1.55(500) = 775R
Therefore, wve find,

nom vy (B mm oz [l v

My' = - 0.85(minus sign means gas is moving to left)

ve=M" h901 JT = (0.5)(1}9.1) \lm =116°
y y y £t/sec.

T, LIS 1 =
10’04 ;q B Ty 0.57 891°Rr

P, ':(p;g)y. Py'= sl - 118.9 psia
y

0.6235
Summarizing:

vy' = 1160 ft/sec T,'= 775°R

My' = 005 T°’.=891%
py' = T4 psia Po '= 118.9 psia

y
2000 ft/sec
Ll 2 Lt [Z 7/ L 2L L 2/t /L 727
' = 20 psia ' = 1160 £t
:x' -50023 Yy' 3 O;_{__!_aec

y
stationary l&' = 0.85

eas
ST 777777777 772777/ 77777777

Notice that the gas following the blast wave is falling farther and farther
behind the wave front since its velocity is less than the wave velocity.
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l.1

l.2

1.3

1.4

HCME FRO

The problems will, in general, be numbered as follows: 1l.l1l, 1.2,
1e3, o o 9 2edly 22, o ¢ o 0331, 3.2, ¢ ¢ o , Where 2.3, for example,
reads problem number 3 of the problem set accompanying lecture note 2.
(Por all prodlems involving air, assume air to be_a perfect gas,
unless gthergise noted, with k = 1.4, R = 1715 ft2/30c2 g, and cp,=
6000 £t</sec< °R)

Show that the path of a constant pressure process of a perfect gas
on a T-v diagram is a straight line. (Investigate slope AT/dv by
differentiating equation of state).

The logarithmic differential of x is obtained by dAifferentiating

(ln x) and is dx/x. how that the logarithmic differentials of the
properties p, T and /“(/ = 1/v) of a perfect gas are related by dp/p=
aT/T+ a 2/~ . (Hint: Write equation of state in logarithmic form.)
Does 4 2/ = dv/v? Prove.

The internal energy of 1.2 slugs of air in a rigid non-conducting
container is increased as a paddle wheel in the container is turned
by a mass of 20 slugs descending 200 ft. at a location where the
acceleration of gravity is 25 ft/sec2. Find

(a) Au (83,400 £t#/slug)

(b) A h if initial temperature of air is 70°FP.
(117000 t£t#/slug)

(¢) what would be the change of enthalpy of the system 05
gas if the acceleration of gravity is 32.2 ft/sec<?
(151,000 £t#/slug)

Starting with the definition of entropy show that ds = Sp 4aT/T - R 4dp/p.
Using this result ard results-of problem 1.2 along with ¢p - oy * R
obtain,

T

aT a/o _ aT dv 2 v2

(b) da-cvgpn-cp%-zcvipﬂ-rcpg'l;l2-318 etc.

Dividing ds as given in (1.4) by cp we obtain

ds 4T _ R dp . 4T _ k-1 4dp e Thus for a reversible adiabatic
Sp T p P T k P .
Ke

process with 88 =0 we have 4T = k=1 dp o T2 o ((R2\%
Sp T k p Ty P1

Show similarly, using l.4 (a) and (b), that
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=3 ( T)
<—> (2)

for an isentropic process.

and

1.6 Flot a temperature-entrory diagram for air with lines of constant
prosaure and specific volume thereon for
p = 120, 60, 30, and ].5 psia

= 418 and 317.5 £t3/s1lug

Show an enthalpy scale along with the temperature scale. Select as a
reference state of zero entropy and enthalpy air at 15 psja and 4O0°R,
Let temperature and entro;y scales range from O°R to 1800°R (1®* 200°R)
and

o £t 1bf ., 9600 M% (1' = 1250 £t )reapectively.

slugPR slug slug
aT - T
l.7 Graphicelly check the slopes ( ) = I and ) = <= at any given
ds/ p ©p

temperature on the diagram of rroblem 1l.6.

1.8 PFind:(1l) The work done by, (2) the heat received by, the increase in
(3) internal energy, (4) enthalpy and (5) entropy of a system of one
slug of air which is initially at 120 psia and 1200°R as its specific
volume increases to 418 ft /slug by the following processes. (Sketch
each process where possible on the T.3 diagram of problem 1. 6)

(a) Reversible constant pressure

(b) Reversille constant temperature

(c) Reversitle constant internal energy

(d) Reversible constant enthalry

(e) Reversible adiabatic:

(f) Adiabatic expansion into an exhausted chamber,

1.9 Air expands through a nozzle from a large reservoir wherein T = 80°r.
What is the temperature of the air leaving the nozzle if the nozzle exit
velocity is 1200 ft/sec? Would this temrerature be measured by a
stationary therameter placed at the exit of the nozzle?

1.10 Air enters a reversible adiabatic turbine with py = 60 psia, T,=1800°R,
V] = 200 ft/sec. through an area A of 30 sq. inches. The air leaves
the turbine with negligible velocity st 30 psia. ¥Find the turbine
horse-power output. (417 hp).

l.11 Solve forAh of 1.10 graphically using h - s diagram of page l.4.
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1.12 A body of 10 lbm mass is acted upon by a horizontal force of one
pound at a location vhere the equivalent acceleration of gravity
is 20 ft/sec?. Neglecting friction, what is the horizontal
acceleration dus to the one round force?

1.13 What would be the horizontal acceleration in Prodlem 1.12 if the

body had a t of 10 pounds at the location where equivalent
€ is 20 ftyseo=c?



1800

1600

1400

1200

1000

TEMPERATURE, T (°R)

600

400

200

ME 257

Pl.y

72

48

12

=12

1600

3200

4,800 64,00-
ENTROFY, 8 (£t #/ slug °R

8oo0

9600

ENTHALPY, h x 107 (£t # / slug)
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2.1 A jet pump is indicated schematically in the figure hesrewith. A
high veloscity jet of water flows out of the small noszzle with mass
rate of flov wy. This flov entrains water of mass flov wp as shown.
Using subscript 2 for stream properties of the entrained fluid at
station A and subscript 1 for stream properties of the jet at section

A write the continuity equation for the control volume indicated by
dashed line.

~ 3

( ! I
—> 1

e |

1 _—— ——jﬁ vy je—s oontrol surface

=3 |

1= |

-3 B i 4

2.2 Consider a rockst operating on a test stand. Apply the continuity
equation to the eontrol volume indicated.

Q)

P =
== Z: =

control surface

R T et e S

|
|
|
|
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3.1 Apply the momentum equation to the pump of probl.-f.l. Let the
wvall-fluid shearing stress be [ w* Obtain

PiA) + p2A2 = p3(A) + Ap) -fT' U, 2732 (V) + AV)) -
V) PV, - Vo A2V

3.2 Pind the force of fluid on convergent portion of duct for the flow
indicated bdelow.

= 62.4 .
/r0 s 1% u?:%

s —
g

; W 20 psia ) «ll./ psia

Ay = 2 112

A, =1 242

7'2 =20 ft/sec

PSRy REEEL S S SR S e

o
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3.3

35

‘M —— — C— — — cS— o

Apply somentum tion to rockst of problem 2.2 and justify the
assumption of a 0., This assumption is used in the mlylio of

rocket thrust on a test stand using a solid propellant as indicated
in sketch of problem 2.2.

(a) Vith the aid of a sketch show what forces are considered significast
and are inoluded in the term F .

(v) Por each term in :?(of part (a)) give an example in which the
term is negligidble or 36ro.

In an experiment to determine drag, & eircular cylinder of diameter a
was immersed in a steady two-dimensional inconpressibdle flowv. Measure-
ments of velocity and pressure were mede at rectangular boundaries of
the control surface shown. The pressure wvas found to be uniform over
the rectangular portions of the control surface boundaries. Ihe

at the control surface boundary wes Approx-

imately as indicated 4n the sketch.

v v v

—
v

!

1 |

|

// control swface ————>
- ' L4

[

l

I

i

a/2

v

3/4 V

——

-,

>|v/2

»

>
a/2 _——:b/u v
: O

1
.'d -
d

> >
v v v

From the measured data calculate the drag coefficient of the
cylinder défindd as
t

[+ ]
‘o (1/2Av2)a
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36 A roocket is mounted on a test stand es indicated below. The propellant
consumption rate of the rocket is 5 lbm/sec. The rocket exhausts into
& surrounding atmosphere of 10 psia with an exhaust jet velocity of
5900 £t/sed.

‘The thrust of the rocket is defined as the sheat force acting in the
support rod at the control surface section A=B,

(a) Using the ocontrol surface shown develop an expression for the
rocket thrust.

(b) What is the magnitude of the thrust? (Treat the exhaust eases.as
perfect with the properties of air)

(c¢) If the rocket nozzle exit section pressure is 10 psia and the
surrounding atmosphere pressure were 12 psia, how would the
thrust be affected? Explain briefly.

———

— //7/'/,/-//7//\/ -
/”-—&\\.\‘

= /,' // o s m-
7/ // \\ /./,// o \
WL el T ¢
Dy W ->5900 ft/sec
N S e
e
i exit section

Y W e \
/1//,’ control surface
4 /
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3.7 In a wind tunnel drag test of a missile model at high sudbsonic Mach
Numbers the stream conditions preceeding the test section (at station
1 in figure below) are uniform across the tunnel at

= 20 psia
T, = 461°R
71 = 844 £t/sec

With the missile mounted. in the tunne]l the stream conditions at station
2 are found to be (assume stresm properties unifornm at 2)

P2 =14 psia
Y, = 935 ft/sec.

Without the missile in the tunnel the stream properties at station
2 are found to de

Po = 19.5 psie
- Vo= 862 £t/sec.

From these data estimate the missile drag coefficient based on the
stream conditions at station 1. The model's wing area is 1.33 sq ft.

P |

I

-~

constant area test

!
|
i
i
I
|
—
section of 44 £t é

w;-—-——-
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3.8 To obtain performance data on axial flow turbine blades, the blades
may be arranged in a cascade (arrangement of blades in a manner similar

to slats in a venitian blind) and tested in a two-dimensional wind
tunnel as shown below.

stream lines

"ﬁ

s =& 2 inches
flow depth normal to paper = 1 f£t,

In such a test the stream properties are uniform at sectiom (1) and
(2) and are
P, = 15 psia
1
Pp = 14.97 psia
V3 = 60 ft/sec

Treating the air as incompressible (/° = 0.078 lbtm/ft3 = 0.00239 slug/rt3)

find the x and y components of the force acting om blhde ‘A’ of the
cascacle

*\
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3.9 Consider the steady flow of an incompressidle fluid in a constant
area pire of diameter D. Using the continuity and momentum equations
show that the pressure drop between two stations, (1) and (2), a
distance L apart is given by '

Pp-py = -f = k

where 'F is the pire friction factor defined as

£ 7.'.5_7' (72, ® wall-fluid shearing
. /2 8 stress)
(Note: Another friction fector sometimes used is ‘f.-.- %/—2)

3.10 The stream properties at the inlet and sxit of a turdo-jet engine
are given bdelow. Determine the internsl force of fluid on duct
for these conditions.

l. 5 | ecomb. | = :
' g | 5 l
| _ Rt chamber | e :
Fd e I— T e — —
[ AL LI 77 P F 2T &= 4
(1) (2)
= 20.3 psia Po = 15.3 p.g;
V, = 392 ft/sec vV, s 1980 ft/sec

T, = 570°R
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open globe valve _l

]

—

100 ft. of =
3* 1I.D. pi LL

— >

/-ﬂbﬂl '

5.1 A pump discharges water through the system shown at the rate of 500
gallons/min. The loss coefficients are:

Device (o]

Inlet 05

Elbow 1.0

Open Globdbe 8.0
Valve

Sudden as per theosly
enlargement

Pipe 0.02 k

The pump efficiency is 70

(a) Estimate the gauge pressure at the pump discharge, in psig.
(b) Estimate the power required by the pump, in horserpower.




In certain regions where hydro-
electric power is availabdble, a
large amount of water at low head
is availadble in reservoir B. This
amount is more than ample to take
care of powver demands for most of
the year, but at certain periods of
the year, there is a shortage. 1In
40" such cases, if a small basin A is
turbine available near by at a very high
head, it may be econamical to pump
water to A during the times when
there is excess capacity in B, thus
making the water in A availabdble
when B is low in water. The sketch
shows such a system for transferring
water from B to a, with a direct
drive between the tunbdbine and pump.

Determine the ratio qp/q‘ of water pumped to A to total water used by the
turbine, assuming, ‘

KpBrz 4' 3 ﬂ&‘-" 20* ; B‘” = ch’z -

(ANS ; Qp/% = 0.123)

Air is drawn into 5 fan at standard conditions
" ‘ (L = 0.075 ltm/ft7) and is discharged from a
nozzle placed at the exit of a 100-ft stack.
r The nozzle exit diameter is 1 ft, and the air
flow is 100 ft3/sec. Assuming that all losses
in the system are negligible except for the
100 lozses in the fan, and that the latter has an
efficiency of 60X, estimate
(a) the power input to the shaft of the fan, in
horsepowver
(b) the lost head in the fan, in ft. of air.

fan . air in
vkl &r\' ANS: (a) 5.7 hp
(b) 167 rt
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5.4

600°p

T .

—I— @
14.7 psie

100°* 70°F

N |« 12°

OVEN Lr'—"rm 70°r

Air is heated to 600°F in an oven and is then exhausted to the
atmosphere through a 12-inch sheet metal stack 100 ft. high.

Assume that in addition to pipe friction there are miscellaneocus losses
amounting to two kinetic energy heads (based on the velocity in the
stack), and that the static pressure at @ is the same as the static
rressure at the air inlet.

Estimate the mass rate of flow of air through the system, in lbtm/sec.

The head loss in the pipe may be estimated from

‘T o0.02 & --"E
Hipipo D 2g

Answer: 1l1.05 lbm/sec
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#.
55 WVater flows from a lake through a pipe of 1 foot inside diameter
and 5000 feet long, discharging into the atmosphere at a point
100 feet below the 2ake's surface. If the frictidm factor
inside the pipe is 0.02 what mass rate of flow would you expect
to be discharged from the pipe? Neglect any head losses except
those in the 5000 feet of pipe.

E—-_'—._
S Y
100 f't
‘--\ —_

5.6 Estimate the yolume of room air flow per minute through a house-
holé fireplace with a mean chimney gas temperature of 860°P. The

chimney height is fifty feet. The flow losses in the chimney amount

to two kinetic heads. Use chimney area of one f£t2.

5.7 In evaluating a particular chimney design for a furnace, measurements

of the leaving gas velocity from the chimmey and of the flue gas

temperature are mede. In a 100 ft. chimney of 12° diameter the flue

gas temperature is found to be 600°F when the exit velocity from
the chimmey is 40 feet per second. If the ambient temperature

is 70°F what is the magnitude of the flow losses through the chimney?

(Assume the flue gases to be air)
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5.8 Air enters the turbine cascade depicted delow at 900 ft per second
and at & pressure of 14.7 psia. The cascade is a constant passage
area-impulse type. Treating the flow as incompressidle and assuming
a loss coefficient through the cascade of 0.2 £ind the axial and
tangential force on the cascade per unit of flow rassage area, The
entering and leaving velocities make an angle of 30° with the plane
of the turbine wheel. (- « 0,002378 slugs/rt3)
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5.10

Using the Hagen Poiseuille Lav and the momentum equation applied
to a control volume of radius R (pipe radius) show that for
fully developed laminar pipe flow of an incompressible fluid the
pipe friction factor is given by

ftﬂ.
Rey

where Rey :/ol%g and V = Bulk mean velceity

In an experiment to measure the viscosity of an o0il, the oil flows
through a 0,811 inch diameter pipe at a measured flow rate of 0,46
lbm/sec. The pressure of the oil measured at two points 2 £t
apart is found to bde

P = 1.7 £t. o1l

P, = 1.6 £t. o1l
By oObserving the flow exit conditions from the pipe it is known
that laminar flow exists. Fram the given data determine the
dynamics viscosity of the oil. (o1l sp. gr. is 0.8) Wwhat is the
kinematic viscosity of the o0il?

(A= 146 x 1074 J.!Lm or —8IME ;4.7 x 10”3 _1M_ . 7 centipoise)
£t ft-sec ft-seo

( 4'- 0.942 L— 8.75 em?® or stokes)

sec sec

1 dyne® 2,248 x 10 ~ 1df
lem s 2.54 in.
1l stoke i 1l %

For water at 20°C, /é; = 1 centipoise.
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6.1 A projectile in flight carries with it a more-or-less conical-shaped
shock front. From physical reasoning it appears that at great dis-
tances from the projectile this shock wave becomes truly conical
and changes in velocity and density across the shock become vanish-
ingly small.

Photographs of a bullet in flight show that at a great distenco from
the bullet the total included angle of the cone is 50.3 « The
pressure and temperature of the undistrubed air are 14.62 psia and
73°P, respectively.

Calculate the velocity of the bullet, in ft/sec., and the Mach
Number of the bullet relative to the undisturbded air.

(ANS.: 2680 ft/sec; 2.36)
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7.1 Give the value of 4T  and dp, relative to zero for flow through the |
following ducts. ;

(a) frictionless, dlabatic (non-adiabatic), and constant area duct,
(1) heating, (ii) cooling

_.:_; +— =
7 \; -4}—»

(1) (11)

(b) Pricticnal, sdiabatic, end (1) constant area, (ii) diverging area
(141) converging area.

! -~
R +— + T Tt
(1) oGy T (111)

(c) frictionless, adiabatic, and (1) constant area (ii) diverging
area and (1ii) converging area.

7.2 How many independent properties are required to fix the state of a

agas:
(a) in the adbsence of motion, gravity, electricity, capillarity, and
magnetiam? '

(t) in the absence of gravity, electricity, capillarity, and
magnetism?
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In the case of (7.2b) above,will

(a) p, T, and v
(v) p, T, and p,
(¢) T, To, and p
(4) p, T, and V
(e) p, po,and V
() 7T, To, and V
(e) Pos To. and p
(h) Po» TO' and T
(i) Pos To. and V

fix the state of the gas?

Put the steady flow energy equation for flow of perfect gas with Wy=Q =0
in terms of Mach number starting wéth
v v
2
byt Sl .oy r 2

75 Air is flowing through the passage indicated with the quantities givon
measured at section (1) where duct cross sectional area is 0.2 ft2,
Find the gas mass rate of flow.

L= = '1'01- 734°R P = 84.3 psia.
po:l Z 100 psia
(1)
7.6 PFPor air
(-L) < m means M; D 1.
Po /71
(-T—) < n means M)} > 1.
To/ 1
Determine m and n
7.7 Air is flowing through a frictionless constant area duct with 600 Btu

of heat added per slug of air between stations (1) and (2). For the
conditions given below determine
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Te7 (Cont.)

P7.3

() T (a) T, (e) W,
(b) 71 (e) T2
(e) M (£) v,
| INSIREEE Sl
) Q {2)
Py = 75 psia Pop = 95.3 psia
p°1 = 100 psia Py = 57.3 psia
To, * 560°R

Q = (600 x 778) £t. 1bf
slug

Compare stream properties at (1) with those at (2).

Notice that

pressure 4drops, Mach numder increased, Volocity.incroaau. estce,
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AREA  (£%°)

P9.l

A circular nozzle having the area distribution given in the accompanying
chart is to expand air reversibly and adiabetically from a region in which

p, = 300 psia p = 265 psia

T, & 760°R (See plot on next page.)

(a) Assuming supersonic flow downstresm of the throat what is the

exhaust region pressure, DPg. for reversible flow throughout?

(Hints Compute w).

(v) Plot the pressure ratio p/p.. versus nozzle length for the expansion
to p, and sketch the procesg on the appropriate T - S diagram of the
area distribution chart.

(¢) Determine the exhaust region proasuz;e. Pho which gives subsonic
flow in the diffuser section for maximum mass rate of flow.

(a) Plot (p/po) along the nozzle axis for the flow of part ¢ and
sketch the process on the T-8 disgram for exhaust to pp.

(é) Calculate the mass rate of flow when the exhaust region pressure is
Py # 285 psia and plot the pressure distribution for this case.
Sketch process On appropriate T-S diagram.

(Note that p > 265 psia for this flow.)
inlet

(£) Plot the rpressure distridbution when the mass flow 1is 0.5 slugs per
sec.

N ‘.
0.045 ]

0.040 ! . /

o
o
¢}
/r’, !

\F 04023 t
0.020 !

0,057 | s
P

- —

0 0.5 1.0 2.0 3.0 4.0
NOZZLE LENGTH (inches)
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ME D7

9.1 (Cont.)
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o © d
~
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Functions of Mach Number
' Subsoniec Supersonic
w ! \

5 W \JT) { ':]lfof . EXiA ] z 4 [T
AP AP P AP
0.00 | .0000 0.50 .4,698 1.00 1.004 || 1.50 1.654
.02 .0184 52 4895 1.02 1.027° 1.52 1.682
.03 .0275 53 4995 1.03 1.039 1.53 1.697
.Oh 00367 0,5“ 0509“ 100“ 10051 1.5h 10712
<05 <0459 S5 5194 1.05 1.063 1.55 1.726
.06 | .0551 56 5294 1,06 1.075 1.56 1.741
.07 0643 ST | «53% 1.07 1.087 1.57 1.756
.08 <0743 58 t S494 1.08 1.099 1.58 1.771
Q9 .0826 59 | 5595 1.09 1.101 1.59 1.786
.10 .0916 «60 ' 5696 1.10 1.123 1.60 1.801
.11 .1010 .61 5797 1.11 1.135 1.61 1.816
.12 .1102 .62 5899 1.12 1.148 1.62 1.831
.13 «1195 .63 6001 1.13 1.160 1.63 1.846
1l .1287 b4 6103 l.14 1.172 1.64 1.862
.15 .1379 65 .6206 1.15 1.185 1.65 1.877
.16 1471 .66 <6309 1.16 1.197 1.66 1.892
.17 1564 .67 6412 1.17 1.210 1.67 1.908
.18 1656 .68 .6516 1.18 1.212 1.68 1.923
019 1749 .69 «6620 1.19 1.235 1.69 1.939
«20 1842 .70 6724 1.20 1.247 1.70 1.954
«21 1934 71 «6829 1.21 1.260 1.7 1.970
22 «2027 72 <6934 1.22 1.273 1.72 1.986
«23 «2120 .73 «7040 1.23 1.286 1.73 2.002
24 «2213 oTh <7145 1.24 1.299 1.74 2,018
025 02307 0'5 07252 1.25 10312 105 2.03&
.26 <2400 <76 <7358 1.26 1.325 1.76 2.050
27 2494 oT7 « 7465 1.27 1.338 1.77 2.066
.28 .2588 .78 7572 1.28 1.351 1.78 2.082
29 .2682 79 - 7680 1.29 1.364 1.79 2,098
.30 2776 |1 .80 7788 1.30 1.377 1.80 2.114
«31 .2870 .81 «7897 1.31 1.390 1.81 2.131
«32 «2965 .82 «8006 1.32 1.404 1.82 2.147
.33 <3059 .83 | 8115 1.33 1.417 1.83 2.164
34 | <3154 84 ! .8225 1.34 1.43 1.84 2.180
035 032u9 085 4 08335 105 lom 1085 20197
<36 «3344 .86 8445 1.36 1.458 1.86 2.214
37 3440 .87 .8556 1.37 1.471 1.87 2,230
«38 353 .88 | 8667 1.38 1.485 1.88 2.247
39 «3631 .89 { .8779 1.39 1.499 1.89 2,264
40 « 3727 .90 . .8891 1.40 1.512 1.90 2.281
o4l .3823 91 9004 l.41 1.526 1.91 2.298
42 .391¢ 92 <9117 l.42 1.540 1.92 2.315
43 4016 .93 «9231 1l.43 1.554 1.93 2.332
Ul 4112 94 -9344 .44 1.568 1.94 2.350
U5 4210 «95 9459 1.45 1.582 1.95 2.367
46 4307 .96 9574 1.46 1.596 1.9 2.384
47 Julsol .97 9689 1.47 1.611 1.97 2.402
48 4502 .98 i «9805 1.48 1.625 1.98 2.419
49 4,600 «99 9921 1.49 1.639 1.99 2.437
50 4698 1.00 ‘.0038 1.50 1.654 2.00 2.454
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10.1 Starting with a2= RT and using relations developed in note1o
show that
ke
s ¥ u
» 142 4
10.2 Show that in subsonic isentropic flow
5o P <o
av 4aT
dA‘i < dA >0
and vice versa for supersonic flow.
10,3 Derive -
(a) o2 L P | W2 _kt])
k-1 2 2(k-1)
using energy equation, equation for velocity of sound, and defini-
tion of starred quantities, Show that (a) reduces to
(b) .02: kr) 3‘2
2
10.4 A supersonic wind tunnel is to be designed for a test secticn Mach

number of 1.5. The inlet conditions to the tunnel ars to de

(a)
(v)
(e)

(a)

P; = 10.6 peia A, ®1.2 rt2

Po = 14.7 psta T = 600° R
what is the required test section area?
Pind T, p, YV and v in the test section
If the tunnel exit area is 0.2 £t.°2 greater than the
test section area what is the limiting exhaust region
pressure for sonic throat conditions with p, = 14.7
and T, = 600° R?

Will the test section conditions correspond to those of
part (b) up to the exhaust region pressure of part (a)?

—_—_————N
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Pl2.1

12.1 Draw the pressure distridbution through the nozzle of problem 9.1
assuning a normal shock occurs at the station corresponding to
(P/Po) = 0.2 with reversible flow elsewhere. What exit region

pressure is required to produce this flow?

12.2 A supersonic diffuser is opefating with a supersonic inlet stream
velocity and with a normal shock in the diffuser at station (2)
as shown dbelow. The stream velocity is reduced to a negligible

magnitude at the exit of the diffuser.

\\/

flow N
) ty
8 ,_]\\
(1) (2) (3) \\\\\\]
inlet normal  throat (4)
shock oxit

Sketch the flow process through the diffuser on a T-s diagram

indicating on the temperature axis

(8) To . T*p Tyo T o To%. Ty

Also sketch in nressure lines corresponding to

(v) »p P*_,. P P®, .
ox' x °y' y

Make the sketch sufficiently large to be clear.
page for the diagram if desired).

(Use a whole
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13.1 (.)

(v)

(e)

P13.1

A vedge with included angle of 20° 1s placed in a flow which
Po ™ 100 peia, p = 20 psia, and To ™ 800 F. Vhat are the
exit stream properties from the attached plane shock that
results, {.0., p, T, M, V, p,, and To?

What is the maximum p possidle in this flow for an attached
shock wave to occur?

What is the maximm included wedge angle for amn attached shock
to occur in the flow of (a)?
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14.1

14.2

Assume a flow to originate in a large reservoir with T = 540° R,

p = 75.1 psia, and, arbitrarily, s = 100 —‘-‘-6'— i Let the flow
slug® R

proceed through a convergent nozzie to n]_ = OJ.4, thence through a

simple frictional duct. Plot the locus of fluid states (Fanno

line. In the computations let T = 503, 492, 450, 372, and 342° R,

respectively. | A r ).
(Not.t a = Fl '1)

To cause the flow of 12.1 to proneed fram M = 0.4 to M=1.0
requires a certain duct length and exhaust region pressure < p*®
of the Fanno line. Suppose these conditions are met such that
M= 1 at exit of duct and then the duct length is increased,
everything else remaining rixasd. Sketch on the Te-s chart of
problem 1l4.1 the new flow processe.
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FANNO LINES FOR PERFECT GAS - T, 540° R PARAMETER IS w/A IN SLUGS/SEC-
NUMBER BY CIRCLE O SHOWS MACH NO. AT THAT POINT

540

500

11

(°R)
420

-+

380

_,ﬂ‘

340

100 300 500 700 " 900 1100 1300

.(_m_)

slug®Rr
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5.1

N

4

N~

T, " 520° R
1

P, = 4O" Hg gage
1

Py = 24° Hg gxee
p°2 33.7 He enge

o e— 8 —

15.2

5.3

154

T,= 600° R T
1

{1) (2) Barameter *= 29.,5° Hg
Tube diameter = 0,760°

Pind friction factor f. Ans. £ = 0,0067

What 4s force of fluid on pipe of (15.1) between sections (1)
and (2), Ans. ?'—' lol#

Air is flowing through a circular pipe of 1# diameter with
following inlet conditions.

p°1' 18 psia friction factor £ = 0.0025
nn = 15.18 psia

;)Q:l = 600° R

(a) If Mach equals one at pipe exit, what is pipe length and
maximum discharge region pressure? (Linx' 107* p = 7.11 psia)

(b) 1If pipe is 60" long what discharge region pressure is re-
quired to maintain above inlet conditions? (12.38 psia)

(c) WwWith pipe length = 60°* and back pressure = 7.11 psia what is
w/A? (1l.44 slugs/sec-ft2.)

(d) If after condition (b) is established, the pipe length is in-
creased to 107* what is (w/A)? (1.13 -lugs/aec-ttz.)

Consider the supersonic flow of air in a 1" diameter pipe with
= 0.0025 and with following inlet conditions

p°1= 20 psia P~ 2.55 psia g
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b.

Coe

a.

Wwhat pipe length and exhaust pressure will give M = 1 at pipe exit?
(Lunx = 30.5" p = 6.25 psia)

As the pipe length is increased beyond the value determined above
and the exhaust [ressure remains constant will the pire inlet
conditions change immediately or only after a certain pipe length
has been reached? Explain,.

What pipe length is required to produce a shock in the flow at the
point ccrresyponding to M= 1.7 (1.e. the shock inlet Mach number,

Mx eqmlﬂ 1071)? (l&s.h')
Compute w. and Wee

What is meximum pipe length for sonic flow in nozzle throat and at
pipe exit and sudsonic flow elsewhere in system? . (293°)
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17.1 Fow flow with simple T, effects show that

% _ o 40 &Q for M1
< ar
at, o >0 for M>1

17.2 Air is flowing through a frictionless constnat area duct with 600
Btu of heat added per slug of air between stations (1) and (2).
For the conditions

Q
N\, p.= T5 psia
\ 1
polt 100 psia
o
‘1'01- 560 R
(1) (2)

given with figure determine Po, and f 5

answers)

(See prodlem 7.7 for
17.3 A ramjet combustor of constant area is operating cold (no fuel
flow) with following inlet conditions
P, > 21.38 psia T, = 500° R
P, = 18 psia A= 1.0 f_tz

a. Assuming frictionless flow what is maximum permissible heat-
ing between inlet and exit without affecting inlet conditions?

(T, = 725° R)

be If 774 Btu per slug of air are added between (1) and (2) what
are the camdbustor exit conditions and mass rate of flow?

¢; Assume combustion gives T = 2000° R. What are the new inlet
conditions and new mass r::o of flow?
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18.1 A convergent-divergent diffuser is to be designed for a Mach
Number of 2. Assuming no friction, compare the efficiency and
the percent loss in stagnation pregsure for the following cases:

(a) The best possidble design is employed.

(b) The design is conservative, with a throat area 5% larger than
that required for starting, and with the shock located during
operation at an area SX greater than the throat area.

(¢) The converging portion is eliminated, and the process com-
priaes a normal shock followed by reversible subsonic come
pression.

18.2 A ram jet aircraft is to fly at 40,000 ft altitude with a spsed of
2000 mph.

(a) Design the best convergent-divergent diffuser for this air-
cralt, and con.rute for it the efficiency and the percent loss
in stagnation pressure.

(b) Suppose that it were possible to overspeed the aircraft to
2400 mph. Design the best convergent-divergent diffuser which
could then be used, and find for it the eff ‘ciency and the
percent loss in stagnation pressure at the operating speed of
2000 mph.

(c) Below what flight speed will the shock always be disgorged.

18.3 A supersonic wind tunnel is to be designed for a Mach Number of
two with a test section one sq ft in area. The general arrangement
of the tunnel will be as follows:

Air will be taken from the atmosphere (14.7 psia, 70F) and will be
accelerated to a Mach No. of 2 in a converging-diverging nozzle.
Fram the test section the air will de diffused to sudstantially
zero velocity in a diffuser and will then be discharged to the
atmosphere by a compressor.

The desigh of the tunnel and compressor will be based on the follow-
ing eassumpticns: (1) The nozzle is frictionless to the throat,
while the overall efficiency (Ah/Abh_ ) of the nozzle, from entrance
to exit, is 95%. (2) Although an stfempt will be made to diffuse
the supersonic stream through a throat, for purposes of design the
assupnhtion will be made that the stream with M 2 passes through

a normal shock and that the subsonic stream is then diffused with
an efficiency (Ahg/Ah) of 80£. The conservative nature cf this
assumption will tend to balance the fact that no account is taken
of losses in the Sest section. (3) The compressor has an efficiency,
(A hy,/Ah) based on the reversible adiabatic work of compression of

(a) Make a sketch, to scale, of this tunnel, asauming that pessage-
vays are round in cross-section.

(b) Indicate on the sketch the pressure (psia) and temperature (F)
at the test section, at the entrance to the compressor, and at
the exit of the compressor.

(¢) Specify the diameter of the nozzle throat.

(a) 8Specify, for the compressor, the pressure ratio, the volume rate

of flow at inlet (cfm), and the horsepower required for cperation,
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19.1 Suppose that a blast wave which might have been initiated by en
atomic bomd explosion is traveling through air at standard at-
mospheric conditions with a speed of 200,000 ft/sec.

Estihate the changes in pressure (atm), temperature (), stagnation
pressure (atm), stagnation temperature OF), and velocity (ft/sec)

produced by the wave with respect to an observer who is stationary
with respect to the undistumdbed air.



